1 |
Noise improves cognitive performance in children with dysfunctional neurotransmissionSöderlund, Göran January 2007 (has links)
<p>Research on children with Attention Deficit Hyperactivity Disorder (ADHD) has shown that they are extremely sensitive to distraction from external stimuli that lead to poor cognitive performance. This thesis shows that cognitive performance can be improved if this external stimulus is smooth and continuous (e.g. auditory white noise). Control children attenuate their performance under such conditions. The first Study proposes the moderate brain arousal model (MBA). This neurocomputational model predicts selective improvement from noise in ADHD children. Noise through a phenomenon called stochastic resonance (SR), can be beneficial in dopamine deprived neural systems. The statistical phenomenon of SR explains how the signal-to-noise ratio can be improved by noise in neural systems where the passing a threshold is required. The second Study provides experimental support for the MBA-model by showing that ADHD children improve performance in a free recall task while exposed to auditive noise. Control children declines in the same condition. The third Study generalizes this finding among low achieving children, which it is argued have low dopamine levels. Noise exposure improves performance in low achievers, but inhibits performance in high achievers. The conclusion is that external auditory noise can restore low dopamine levels and thus improve cognitive performance. It is also proposed that dopamine levels modulate the SR effect; this means that low dopamine persons require more noise to obtain an SR effect. Both excessive and insufficient dopamine is detrimental for cognitive performance. The MBA model can be used to explain several shortcomings where changes in the dopamine system have been identified. The MBA model can also help create appropriate and adaptive environments, especially in schools, for persons with a deficient dopamine function, such as ADHD children.</p>
|
2 |
Noise improves cognitive performance in children with dysfunctional neurotransmissionSöderlund, Göran January 2007 (has links)
Research on children with Attention Deficit Hyperactivity Disorder (ADHD) has shown that they are extremely sensitive to distraction from external stimuli that lead to poor cognitive performance. This thesis shows that cognitive performance can be improved if this external stimulus is smooth and continuous (e.g. auditory white noise). Control children attenuate their performance under such conditions. The first Study proposes the moderate brain arousal model (MBA). This neurocomputational model predicts selective improvement from noise in ADHD children. Noise through a phenomenon called stochastic resonance (SR), can be beneficial in dopamine deprived neural systems. The statistical phenomenon of SR explains how the signal-to-noise ratio can be improved by noise in neural systems where the passing a threshold is required. The second Study provides experimental support for the MBA-model by showing that ADHD children improve performance in a free recall task while exposed to auditive noise. Control children declines in the same condition. The third Study generalizes this finding among low achieving children, which it is argued have low dopamine levels. Noise exposure improves performance in low achievers, but inhibits performance in high achievers. The conclusion is that external auditory noise can restore low dopamine levels and thus improve cognitive performance. It is also proposed that dopamine levels modulate the SR effect; this means that low dopamine persons require more noise to obtain an SR effect. Both excessive and insufficient dopamine is detrimental for cognitive performance. The MBA model can be used to explain several shortcomings where changes in the dopamine system have been identified. The MBA model can also help create appropriate and adaptive environments, especially in schools, for persons with a deficient dopamine function, such as ADHD children.
|
Page generated in 0.0346 seconds