71 |
Synthesis and Characterization of Novel Telechelic High Performance Polyester IonomersKang, Huaiying 04 December 2001 (has links)
Novel poly(ethylene isophthalate) (PEI) and poly(ethylene terephthalate) (PET) polymers containing terminal units derived from sodio 3-sulfobenzoic acid (SSBA) were synthesized using catalyzed melt polymerization techniques. Various concentrations of the ionic end group, SSBA, were successfully incorporated in a telechelic fashion. For comparison, polyesters containing telechelic alkyl groups with controllable molecular weights were also synthesized. Furthermore, ionic copolymers of dimethyl isophthalate and trans-cyclohexane dicarboxylate, dimethyl isophthalate and dimethyl terephthalate were synthesized to study the influences of polarity and rigidity of the polymer chain backbone on material properties. Novel branched polyester ionomers using trimellitic anhydride were also prepared. In addition to modifying the polymer compositions, PET ionomers were blended with zinc stearate to investigate the effect of plasticizer on the melt processibilty of the ionomers.
FTIR spectroscopy, which was used to quantify the sulfonate end groups for all of the ionomers, indicated an absorbance peak for the S-O stretching mode between 600-700 cm⁻¹. ¹H NMR spectroscopy was used to confirm the structure of the ionic and non-ionic polyesters, as well as to verify the presence of the terminal groups. By systematically varying the chemical structure of these ionomer model systems (i.e., altering the contents of ionic functional groups), detailed characterizations were carried out, wherein the ionic interactions/aggregations in the ionomers were found to play an important role in the resulting material properties. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements were performed to study the effects of ionic groups and oligomer composition on the thermal properties of the polyesters. The glass transition temperatures of the ionomers revealed that the ionic interaction helped to maintain the structural integrity of the polymer chains, thus limiting their mobility. The dilute solution viscosity behavior of the ionomers exhibited upward curvature, which is a key characteristic of an ionomer. In PEI ionomers, the ionic aggregates formed at lower temperatures (<150 °C), while at higher temperatures (>150 °C), the ionic aggregations dissociated and behaved similarly to oligomers with lower molecular weights. Dodecanol was used as an effective end-capper to control the molecular weight of the non-ionic polyesters. In addition to telechelic ionic PEI and PET homopolymers, copolymers of poly(ethylene isophthalate-co-trans-1,4-cyclohexane dicarboxylate) (PEI-co-trans-CHDC) and poly(ethylene isophthalate-co-terephthalate) (PEIT) telechelic ionomers were also synthesized and characterized. Introducing trans-1,4-cyclohexane dicarboxylate into PEI ionomers decreased the polarity and packing regularity of the polymer chains. Also, the kinked-structure of dimethyl isophthalate reduced the regularity of the polymer chains in PET ionomers, thus reducing their propensity for rapid crystallization. Crystallization kinetics were studied for both ionic and alkyl telechelic polyesters, and resulting data revealed that the nature of the endgroup had a dramatic effect on crystallization from the melt state. The catalyst residue in the polymers also affected the crystallization rate for both ionic and non-ionic polyesters. With regard to the ionomers, antimony catalyst interacted with ionic aggregates, further increasing the crystallization rate. Branched PEI and PET ionomers showed an increase in melt strength. After blending with zinc stearate, the melt viscosity of the PET ionomers dropped dramatically. / Master of Science
|
72 |
Reologické a adhezivní vlastnosti matric pro lyofilizované orální vakcíny / Rheological and adhesive properties of matrix for freeze-dryied oral vaccinesLonginová, Vendula January 2021 (has links)
CHARLES UNIVERSITY Faculty of Pharmacy in Hradec Kralove Department of Pharmaceutical Technology Name: Vendula Longinová Title of diploma thesis: Rheological and adhesive properties of matrix for freeze-dryied oral vaccines Supervisor: PharmDr. Eva Snejdrova, Ph.D. The aim of the diploma thesis was to evaluate the rheological and adhesive properties of formulations for lyophilized oral vaccines and lyophilized tablets formulated on the basis of dextran, iota-carrageenan or trehalose. The theoretical part characterizes dosage forms for application to the oral cavity, lyophilized preparations and excipients for mucoadhesive preparations. In the experimental part, rheological and mucoadhesive properties on a rotary rheometer were evaluated. Formulations containing iota-carrageenan showed higher viscosity, higher gel stiffness, lower degree of relaxation and higher yield stress than trehalose formulations. All lyophilized tablets showed sufficient adhesion to a standardized mucin support in vitro. The performed experiments represent pilot tests of flow, viscoelastic and mucoadhesive properties of lyophilized tablets for oral administration of pertussis vaccine. The contribution of the work is the design of a testing methodology for the final formulations during stability tests. Key words: lyophilized...
|
73 |
The Moduli Space of Polynomial Maps and Their Fixed-Point Multipliers / 多項式写像のモジュライ空間とその固定点における微分係数Sugiyama, Toshi 23 July 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13201号 / 論理博第1560号 / 新制||理||1635(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 宍倉 光広, 教授 泉 正己, 教授 國府 寛司 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
|
74 |
Branched chain amino acids attenuate major pathologies in mouse models of retinal degeneration and glaucoma / 分岐鎖アミノ酸は網膜変性や緑内障のモデルマウスにおいて変性の進行を抑制するHasegawa, Tomoko 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21651号 / 医博第4457号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 伊達 洋至, 教授 松原 和夫 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
75 |
Synthesis and Characterization of Arborescent (Dendritic) Polystyrenes Prepared by Raft PolymerizationHeidenreich, Andrew J. 10 August 2011 (has links)
No description available.
|
76 |
Synthesis and characterization of poly-amido-saccharides with novel structures and propertiesXiao, Ruiqing 16 February 2019 (has links)
Polysaccharides are complex biopolymers that play essential roles in the biological systems including energy storage, structural support, lubrication, and signal transduction. Despite their importance, the synthesis of polysaccharides has proven to be very challenging due to the presence of multiple hydroxyl groups and difficulty in controlling the stereochemical outcome of glycosylation reactions. As a conventional chemical method to synthesize polysaccharides, ring-opening polymerization of anhydrosugars enables the synthesis of stereoregular α-(1→6)-linked polysaccharides, but is less effective in preparing polysaccharides with other linkages. Enzymatic polymerizations have also been explored, however, these methods typically require expensive monomers, and suffer from a narrow scope of enzymes and small scale of reactions.
The limited approaches to polysaccharides have inspired chemists to synthesize polysaccharide mimetics with achiral linkages that can be constructed efficiently. Poly-amido-saccharides (PASs) are a new type of saccharide polymers in which the O-glycosidic linkages in natural polysaccharides are replaced with (1→2)-amide linkages. With saccharide moieties inter-connected by amide bonds, PASs exhibit characteristics of both polysaccharides and polypeptides, such as possessing pyranose-backbones and lots of hydroxyl groups, and adopting a left-handed helical conformation. However, due to lack of sufficient terminal saccharide residues, previously synthesized glucose and galactose PASs display weak interactions with carbohydrate binding lectins and receptors, limiting their applications in biomedical and pharmaceutical fields.
Herein, the design and synthesis of PASs with novel structures and properties is described. By pre-installing the stereochemistry in the monomer, Altrose PASs (Alt-PASs) with β-(1→2)-amide linkages are prepared via ring-opening polymerization of an altrose-based β-lactam followed by debenzylation. Circular dichroism shows that Alt-PASs adopt a right-handed helical conformation in aqueous solution. Via the polymerization of disaccharide-based β-lactams, two PASs with either 4-O-α-D-glucose branches (Mal-PASs) or 6-O-β-D-glucose branches (Gen-PASs) are obtained. Biological studies reveal that Mal-PASs are multivalent ligands to lectin Concanavalin A, while Gen-PASs activate RAW 264.7 macrophage cells by enhancing the secretion of TNF-α and NO. The anionic ring-opening polymerization of sugar-based β-lactams is a useful method to synthesize well-defined polysaccharide mimetics, and this method expands the current repertory of approaches available to complex saccharide polymers with biological activities. / 2021-02-15T00:00:00Z
|
77 |
Advancing lacustrine proxies for paleohydrology studiesCorcoran, Megan 02 June 2023 (has links)
No description available.
|
78 |
Application of multiplex branched DNA method for the detection and study of avian inlfuenza virusCha, Wonhee 24 June 2008 (has links)
No description available.
|
79 |
Synthesis and Characterization of Responsive Poly(Alkyl Methacrylate) TopologiesKilian, Lars 03 December 2004 (has links)
Dimethacrylate monomers containing two cleavable tert-butyl ester groups were synthesized and utilized in the synthesis of star-shaped polymers. Star polymer coupling was achieved by reacting the living poly(alkyl methacrylate) using 2,5-dimethyl-2,5-hexanediol dimethacrylate (DHDMA) or dicumyl dimethacrylate (DCDMA). These starshaped polymers were cleaved under hydrolytic conditions, leading to significant reductions in molecular weights. The cleavable star-shaped polymers also underwent uncatalyzed degradation at elevated temperatures. Pressure-sensitive adhesive (PSA) copolymers based on 2-ethylhexyl acrylate (EHA) were synthesized containing cleavable branching comprised of either DHDMA or DCDMA. Extremely high molecular weight branched polymers were obtained, and these branched adhesives exhibited 180° peel strengths that displayed a strong dependence on the weight-average molecular weights. The PSA branching sites were cleaved via acid-catalyzed hydrolysis, drastically lowering the 1180° peel strengths of the cleaved linear polymers between 75 and 95 percent.
Branched poly (EHA) PSAs containing 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA), as well as poly(EHA-co-HEMA), were synthesized and modified with photoactive functional groups. Cinnamate functionalized PSAs underwent photocrosslinking under UV light, leading to significant losses in 180° peel strengths. The acrylate functionalized PSAs were mixed with a photoinitiator, and following crosslinking under visible light, these PSAs exhibited excellent deactivation characteristics.
Poly(methyl methacrylate) containing aliphatic diols were synthesized via anionic polymerization utilizing the novel protected functional co-initiator 1,1-bis-, 4'-(2-(tertbutyldimethylsilyloxy) ethoxy)phenylethylene (BTOPE). Following the coupling of BTOPE with sec-butyl lithium, methyl methacrylate was polymerized in living fashion at -78 °C in THF. A broad molecular weight range of BTOPE-initiated PMMA samples were synthesized, and molecular weight distributions were as low as 1.03 were observed. Hydrolytic deprotection of the protecting groups resulted in α,α-dihydroxy PMMA.
The graft macromonomers poly(tert-butyl styrene-block-styrene) methacrylate and poly(styrene-block-tert-butyl styrene) methacrylate were synthesized from the corresponding diblock copolymer alcohols utilizing acid chloride chemistry. Excellent molecular weight control, narrow molecular weight distributions, and perfect crossover were observed in both types of diblock polymers. The macromonomers were copolymerized with methyl methacrylate via solution free-radical copolymerization. The styrene blocks in the purified graft copolymers were selectively sulfonated using acetyl sulfate. / Ph. D.
|
80 |
Synthesis and Characterization of Branched Macromolecules for High Performance Elastomers, Fibers, and FilmsUnal, Serkan 30 November 2005 (has links)
An A2 + B3 polymerization for the synthesis of hyperbranched polymers was altered using oligomeric precursors in place of either one or both of the monomer pairs to synthesize highly branched macromolecules. Unique topologies that are intermediates between long-chain branched and hyperbranched structures were obtained and the term "highly branched" was used to define these novel architectures. Various types of highly branched polymers, such as polyurethanes, poly(urethane urea)s, poly(ether ester)s, and poly(arylene ether)s were synthesized using the oligomeric A2 + B3 strategy. The molar mass of the oligomeric precursor permitted the control of the molar mass between branch points, which led to interesting macromolecular properties, such as superior mechanical performance to conventional hyperbranched polymers, disrupted crystallinity, improved processibility, and a multitude of functional end groups.
Highly branched poly(urethane urea)s and polyurethanes exhibited microphase-separated morphologies as denoted by dynamic mechanical analysis. The similarity in soft segment glass transition behavior and mechanical properties of the branched systems with that of the linear analogues suggested these materials have considerable promise for a variety of applications. When a polycaprolactone triol was utilized as the B3 oligomer for the synthesis of highly branched polyurethane elastomers, the high degree of branching resulted in a completely amorphous soft segment, whereas the linear analogue with equivalent soft segment molar mass retained the crystallinity of polycaprolactone segment.
Oligomeric A2 + B3 methodology was further utilized to tailor the degree of branching of poly(ether ester)s that were developed based on slow addition of dilute solution of poly(ethylene glycol) (PEG) (A2) to a dilute solution of 1,3,5-benzenetricarbonyl trichloride (B3) at room temperature in the presence of triethylamine. A revised definition of the degree of branching was proposed to accurately describe the branched poly(ether ester)s and the degree of branching decreased as the molar mass of the PEG diols was increased. Moreover, branched poly(arylene ether)s were prepared via a similar oligomeric A2 + B3 polymerization of phenol endcapped telechelic poly(arylene ether sulfone) oligomers (A2) and tris(4-fluorophenyl) phosphine oxide (B3) in solution. Highly branched poly(ether ester)s were also synthesized in the melt phase using the oligomeric A2 + B3 polymerization strategy. Melt polymerization effectively limited the cyclization reactions, which are common in A2 + B3 polymerizations in solution, and overcame the need for large amounts of polymerization solvent typical of A2 + B3 systems.
Finally, a new family of telechelic polyester ionomers was synthesized based on phosphonium bromide salt end groups and branching allowed the incorporation of higher levels of ionic end groups compared to linear analogues. / Ph. D.
|
Page generated in 0.1113 seconds