• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Excitation sources for structural health monitoring of bridges

Alwash, Mazin Baqir 19 May 2010
Vibration-based damage detection (VBDD) methods are structural health monitoring techniques that utilize changes to the dynamic characteristics of a structure (i.e. its natural frequencies, mode shapes, and damping properties) as indicators of damage. While conceptually simple, considerable research is still required before VBDD methods can be applied reliably to complex structures such as bridges. VBDD methods require reliable estimates of modal parameters (notably natural frequencies and mode shapes) in order to assess changes in the condition of a structure. This thesis presents the results of experimental and numerical studies investigating a number of issues related to the potential use of VBDD techniques in the structural health monitoring of bridges, the primary issue being the influence of the excitation source.<p> Two bridges were investigated as part of this study. One is located on Provincial Highway No. 9 over the Red Deer River south of Hudson Bay, Saskatchewan. The other is located near the Town of Broadview, Saskatchewan, off Trans-Canada Highway No. 1, 150 km east of the City of Regina. Field tests and numerical simulations were conducted using different types of excitation to evaluate the quality of the modal properties (natural frequencies and mode shapes) calculated using these excitation types, and thus to evaluate the performance of VBDD techniques implemented using the resulting modal data. Field tests were conducted using different sources of dynamic excitation: ambient, traffic excitation, and impact excitation. The purpose of field testing was to study the characteristics and repeatability of the modal parameters derived using the different types of dynamic excitation, and to acquire data that could be used to update a FE model for further numerical simulation.<p> A FE model of the Red Deer River bridge, calibrated to match the field measured dynamic properties, was subjected to different types of numerically simulated dynamic excitation with different noise (random variations) levels added to them. The types of dynamic excitation considered included harmonic forced excitation, random forced excitation and the subsequent free vibration decay, impact excitation, and different models of truck excitation. The bridge model was subjected to four different damage scenarios; in addition, six VBDD methods were implemented to evaluate their ability to identify and localize damage. The effects of uncertainty in the definition of controlled-force excitation sources and variation in measurement of the bridge response were also investigated.<p> Field tests on the Hudson Bay bridge showed that excitation induced by large trucks generally produced more reliable data than that of smaller vehicles due to higher signal-to-noise ratios in the measured response. It was also found that considering only the free vibration phase of the response after the vehicle left the bridge gave more reliable data. Impact excitation implemented the on Hudson Bay bridge using a spring-hammer yielded repeatable and high quality results, while using a heavy weight delectometer for impact excitation on the Broadview bridge produced results of lesser quality due to the occurrence of multiple strikes of the impact hammer. In general, wind induced vibration measurements taken from both bridges were less effective for defining modal properties than large vehicle loading or impact excitation. All of the VBDD methods examined in this study could detect damage if the comparison was made between modal parameters acquired by eigenvalue analyses of two FE models of the bridge, before and after damage. However, the performance of VBDD methods declined when the dynamic properties were calculated from response time histories and noise was introduced. In general, the damage index method performed better than other damage detection methods considered.<p> Numerical simulation results showed that harmonic excitation, impact excitation, and the free decay phase after random excitation yielded results that were consistent enough to be used for the identification of damage. The reliability of VBDD methods in detecting damage dropped once noise was introduced. Noise superimposed on the excitation force had little effect on the estimated modal properties and the performance of VBDD methods. On the other hand, noise superimposed on the measured dynamic response had a pronounced negative influence on the performance of the VBDD methods.
2

Excitation sources for structural health monitoring of bridges

Alwash, Mazin Baqir 19 May 2010 (has links)
Vibration-based damage detection (VBDD) methods are structural health monitoring techniques that utilize changes to the dynamic characteristics of a structure (i.e. its natural frequencies, mode shapes, and damping properties) as indicators of damage. While conceptually simple, considerable research is still required before VBDD methods can be applied reliably to complex structures such as bridges. VBDD methods require reliable estimates of modal parameters (notably natural frequencies and mode shapes) in order to assess changes in the condition of a structure. This thesis presents the results of experimental and numerical studies investigating a number of issues related to the potential use of VBDD techniques in the structural health monitoring of bridges, the primary issue being the influence of the excitation source.<p> Two bridges were investigated as part of this study. One is located on Provincial Highway No. 9 over the Red Deer River south of Hudson Bay, Saskatchewan. The other is located near the Town of Broadview, Saskatchewan, off Trans-Canada Highway No. 1, 150 km east of the City of Regina. Field tests and numerical simulations were conducted using different types of excitation to evaluate the quality of the modal properties (natural frequencies and mode shapes) calculated using these excitation types, and thus to evaluate the performance of VBDD techniques implemented using the resulting modal data. Field tests were conducted using different sources of dynamic excitation: ambient, traffic excitation, and impact excitation. The purpose of field testing was to study the characteristics and repeatability of the modal parameters derived using the different types of dynamic excitation, and to acquire data that could be used to update a FE model for further numerical simulation.<p> A FE model of the Red Deer River bridge, calibrated to match the field measured dynamic properties, was subjected to different types of numerically simulated dynamic excitation with different noise (random variations) levels added to them. The types of dynamic excitation considered included harmonic forced excitation, random forced excitation and the subsequent free vibration decay, impact excitation, and different models of truck excitation. The bridge model was subjected to four different damage scenarios; in addition, six VBDD methods were implemented to evaluate their ability to identify and localize damage. The effects of uncertainty in the definition of controlled-force excitation sources and variation in measurement of the bridge response were also investigated.<p> Field tests on the Hudson Bay bridge showed that excitation induced by large trucks generally produced more reliable data than that of smaller vehicles due to higher signal-to-noise ratios in the measured response. It was also found that considering only the free vibration phase of the response after the vehicle left the bridge gave more reliable data. Impact excitation implemented the on Hudson Bay bridge using a spring-hammer yielded repeatable and high quality results, while using a heavy weight delectometer for impact excitation on the Broadview bridge produced results of lesser quality due to the occurrence of multiple strikes of the impact hammer. In general, wind induced vibration measurements taken from both bridges were less effective for defining modal properties than large vehicle loading or impact excitation. All of the VBDD methods examined in this study could detect damage if the comparison was made between modal parameters acquired by eigenvalue analyses of two FE models of the bridge, before and after damage. However, the performance of VBDD methods declined when the dynamic properties were calculated from response time histories and noise was introduced. In general, the damage index method performed better than other damage detection methods considered.<p> Numerical simulation results showed that harmonic excitation, impact excitation, and the free decay phase after random excitation yielded results that were consistent enough to be used for the identification of damage. The reliability of VBDD methods in detecting damage dropped once noise was introduced. Noise superimposed on the excitation force had little effect on the estimated modal properties and the performance of VBDD methods. On the other hand, noise superimposed on the measured dynamic response had a pronounced negative influence on the performance of the VBDD methods.
3

TESTING AND LONG-TERM MONITORING OF A FIVE-SPAN BRIDGE WITH MULTIPLE FRP DECKS-PERFORMANCE AND DESIGN ISSUES

REISING, REINER MARIA WOLFRAM 17 April 2003 (has links)
No description available.
4

Truck Testing and Load Rating of a Full-Scale 43-Year-Old Prestressed Concrete Adjacent Box Beam Bridge

Setty, Clinton J. 18 April 2012 (has links)
No description available.
5

End-Shield Bridges for High-Speed Railway : Full scale dynamic testing and numerical simulations

Elgazzar, Hesham January 2017 (has links)
The increasing need for High-Speed Railway (HSR) to reduce the travelling time requires increasing research within this field. Bridges are main components of any railway network, including HSR networks, and the optimization of their design for this purpose would contribute to a faster and more cost effective development of the HSR network. The initial investment, the running and maintenance costs of the bridges can be decreased through better understanding of the their dynamic behaviour. This thesis studies the dynamic behaviour of end-shield railway bridges under HSR operation. 2D beam analysis is used to study the effect of the distribution of the train’s axle load. Relatively accurate 3D FE-models are developed to study the effect of Soil-Structure Interaction (SSI) and the dynamic response of the bridges. Modelling alternatives are studied to develop an accurate model. A full scale test of a simply supported Bridge with end-shields using load-controlled forced excitation was performed and the results were used to verify the theoretical models. A manual model updating process of the material properties of the 3D FE-model is performed using FRFs from the field measurements. A Simple 2D model is also developed, where a spring/dashpot system is implemented to simplify SSI, and updated to reproduce the field measured responses. The conclusions of the project emphasize the importance of SSI effects in the dynamic analysis of end-shield bridges for predicting their dynamic behaviour. The conclusions also show that the modelling of the surrounding soil and the assumption of the soil material parameters have significant effect on the dynamic response. Even the boundary conditions, bedrock level and the ballast on the railway track affects the response. The results also show that the bridge’s concrete section behaves as uncracked section under the studied dynamic loading. / <p>QC 20170403</p>

Page generated in 0.0897 seconds