• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bridgeland stability conditions, stability of the restricted bundle, Brill-Noether theory and Mukai's program

Feyzbakhsh, Soheyla January 2018 (has links)
In [Bri07], Bridgeland introduced the notion of stability conditions on the bounded derived category D(X) of coherent sheaves on an algebraic variety X. This topic is originally inspired by concepts in string theory and mathematical physics and has many interesting applications in algebraic geometry. In the first part of the thesis, we provide a direct proof of an important result in [Bri08, BMS16] which states there is a two dimensional family of weak Bridgeland stability conditions on the bounded derived category D(X) of coherent sheaves on a variety X. As a first application of this result, we prove an effective restriction theorem which provides sufficient conditions on a stable locally free sheaf on a projective variety such that its restriction to a hypersurface remains stable. Secondly, we extend and complete Mukai's program to reconstruct a K3 surface from a curve on that surface. We show that the K3 surface containing the curve can be obtained uniquely as a Fourier-Mukai partner of a suitable Brill-Noether locus of vector bundles on the curve.
2

Stability Conditions on Threefolds and Space Curves

Schmidt, Benjamin 22 September 2016 (has links)
No description available.
3

Equivariant Moduli Theory on K3 Surfaces

Chen, Yuhang 08 September 2022 (has links)
No description available.

Page generated in 0.0982 seconds