1 |
Connection and flexural behaviour of steel RHS filled with high strength concreteBrahmachari, Koushik, University of Western Sydney, Hawkesbury, Faculty of Science, Technology and Agriculture, School of Construction and Building Sciences January 1997 (has links)
Steel hollow section members filled with concrete have been frequently used in recent construction industry as columns and beams and beam-columns because of their superior performance and constructability. Previous research demonstrated that such system has large energy absorption capacity which is critical in the event of an earthquake. By filling steel RHS with concrete, the failure of the steel shell due to local buckling can be delayed and the ductility of the concrete core can be improved as a result of the confinement of the steel shell. This type of composite section may be used in various structures including frames of high rise buildings, bridges, offshore structures, cast-in-situ piles in foundation etc. Design methods for concrete-filled steel tubular sections are recommended in a number of code of practices. Due to the significant differences in the material properties between normal strength concrete and high strength concrete, there is a need to study the behaviour of composite sections with higher strength concretes. The study emphasises ultimate strength, ductility, post-failure strength reserve and interface bond. It also emphasises ductility and post-failure strength of the composite beams due to the brittle behaviour of higher strength concretes when compared to normal strength concrete. Spreadsheet graph were used to present the results such as load versus strains, load versus deflections etc. In this thesis analytical study is presented on the calculation of ultimate moment of resistance of the concrete-filled RHS beams. Among the main considerations of the derivation, the steel portion was assumed either elastic-perfectly plastic or perfectly plastic and concrete carries no strength in the tensile zone. At the interface both full bond and partial bond were assumed for comparison. Efforts were also made to calculate the midspan deflections of the composite beams. Simple analytical expressions derived from this study can be coded to a prgrammable calculator or in a small spreadsheet program for design use. Finite element studies were carried out by using a proprietorship software package ANSYS. In the analysis of concrete-filled, three types of elements with large deformation and nonlinear capabilities were used. A plastic shell element, a solid concrete element with cracking and crushing capabilities, and a nonlinear spring contact element were used to model the steel shell, the concrete core and the interface respectively. / Doctor of Philosophy (PhD)
|
2 |
Caractérisation et modélisation probabiliste de la rupture fragile de l’AlSi CE9F et d’une alumine cofrittée pour composants embarqués à applications spatiales / Characterization and probabilistic modeling of brittle fracture of AlSi CE9F and a co-fired alumina for on-board components for space applicationsMauduit, Damien 21 October 2016 (has links)
La démarche actuelle des industries aérospatiales est de diminuer le coût de lancement des engins spatiaux par une réduction de la masse des composants. Dans l’optique de cette démarche, de nouveaux matériaux sont élaborés et permettent de satisfaire aux exigences de densification, de dissipation thermique et de réduction de masse des équipements électroniques embarqués dans les satellites. Cette thèse est une contribution à l’étude de deux de ces matériaux, l’AlSi CE9F et une nuance d’alumine cofrittée à température, destinés à réaliser des boitiers hybrides de protections de composants électroniques, initialement conçus en Kovar. Les objectifs sont d’affiner les connaissances sur propriétés mécaniques des deux matériaux et de mettre en place des règles de conceptions propres à leurs comportements mécaniques. En effet, l’AlSi CE9F et l’alumine ont un comportement à rupture fragile. La détermination de leurs résistances à la rupture est alors réalisée dans le cadre de la théorie de Weibull. Des séries d’essais de flexion quatre points et trois points sont effectués. Elles permettent d’identifier les paramètres de Weibull des deux matériaux à température ambiante et de mettre en évidence les effets de volume. L’étude expérimentale est poursuivie sur l’AlSi CE9F afin de déterminer l’influence de la température sur ses propriétés mécaniques à travers deux approches. La première s’intéresse à une variation monotone de la température et la seconde à des cycles thermiques entre -50 et 125°C. Si la première étude ne montre qu’une faible évolution du module d’élasticité, la seconde démontre que les cycles thermiques contribuent à l’amélioration de la résistance à la rupture de l’AlSi CE9F. Cette augmentation de la contrainte à la rupture se traduit également par une évolution de sa microstructure. Dans un second temps, un modèle de Weibull est numériquement mis en place à partir des paramètres identifiés et du critère de la contrainte équivalente de Freudenthal. Ce critère est analysé et validé à travers l’étude de trois éprouvettes en AlSi CE9F à chargements complexes. Le modèle validé est enfin utilisé pour décrire le comportement mécanique de deux composants dans différentes configurations de sollicitation, réalisés respectivement en alumine HTCC et en AlSi CE9F. Une méthodologie de dimensionnement est alors mise en place et permettra de disposer de nouvelles règles de conception équivalentes à celles existant sur les matériaux classiques. / The aerospace companies currently want to decrease the price of spacecraft launching with a reduction of the mass components. New materials were recently developed to satisfy the rising requirements of thermal dissipation, densification and weight decrease of on-board electronic equipment intended to satellite. This thesis is a contribution to the characterization of two of these innovative materials: AlSi CE9F and a grade of alumina HTCC. These materials are designed to manufacture hybrid boxes for computing chips, originally made in Kovar. The objectives are to improve the mechanical properties knowledge of these materials and to develop a know-how design specific to their mechanical behaviours. Indeed, AlSi CE9F and alumina have brittle fracture behaviour. The strength analysis is also realized in connection with the Weibull theory. The Weibull’s parameters are identified from the four points and three points bending strength and the volume effects are highlighted. The experimental study is completed by the analysis of the temperature influence on the mechanical properties of AlSi CE9F through two approaches. The first one considers a monotonic variation of temperature and shows a minor evolution of the elastic modulus. The second one proves that thermal cycles between -50 and 125°C improve the strength value of AlSi CE9F. This increase is also reflected by an evolution of its microstructure. Secondly, a Weibull’s model is numerically established based on identified parameters and the Freudenthal’s equivalent stress criterion. The Freudenthal’s criterion is analysed and confirmed through the study of complex loading samples made in AlSi CE9F. The confirmed model is finally used to describe the mechanical behaviours of two components respectively made in AlSi CE9F and alumina HTCC, thoroughly in several loading configurations. A design methodology is developed and will bring new rules in modelling and design, closed to those existing in conventional materials.
|
3 |
Modélisation double-échelle de la rupture des roches : influence du frottement sur les micro-fissures / Double-scale modelling of failure in rocks : influence of micro-cracks frictionWrzesniak, Aleksandra 14 December 2012 (has links)
Propagation des fissures microscopiques, est représentée par des variables d’endommagement. L’évolution de la variable d’endommagement est généralement formulée sur la base d’observations expérimentales. De nombreux modèles phénoménologiques d’endommagement ont été proposés dans la littérature. L’objet de cette thèse est de développer une nouvelle procédure pour obtenir des lois d’évolution macroscopique d’endommagement,dans lesquelles l’évolution de l’endommagement est entièrement déduite de l’analyse de la microstructure. Nous utilisons une homogénéisation basée sur des développements asymptotiques pour décrire le comportement global à partir de la description explicite d’un volume élémentaire microfissuré.Nous considérons d’une part un critère quasi-fragile (indépendant du temps) puis un critère sous-critique(dépendant du temps) pour décrire la propagation des microfissures. De plus, le frottement entre les lèvres des microfissures est pris en compte. Une analyse énergétique est proposée, conduisant à une loi d’évolution d’endommagement qui intègre une dégradation de la rigidité, un adoucissement du comportement du matériau, des effets de taille et d’unilatéralité, mettant en avant un comportement différent à la rupture en contact avec et sans frottement. L’information sur les micro-fissures est contenue dans les coefficients homogénéisés et dans la loi d’évolution de l’endommagement. Les coefficients homogénéisés décrivent la réponse globale en présence de micro-fissures (éventuellement statiques), tels qu’ils sont calculées avec la(quasi-) solution microscopique statique. La loi d’endommagement contient l’information sur l’évolution des micro-fissures, résultant de l’équilibre énergétique dans le temps pendant la propagation microscopique.La loi homogénéisée est formulée en incrément de contrainte. Les coefficients homogénéisés sont calculées numériquement pour des longueurs de fissures et des orientations différentes. Cela permet la construction complète des lois macroscopiques. Une première analyse concerne le comportement local macroscopique, pour des trajets de chargement complexes, afin de comprendre le comportement prédit par le modèle à deux échelles et l’influence des paramètres micro structuraux, comme par exemple le coefficient de frottement. Ensuite, la mise en œuvre en éléments finis des équations macroscopiques est effectuée et des simulations pour différents essais de compression sont réalisées. Les résultats des simulations numériques sont comparés avec les résultats expérimentaux obtenus en utilisant un nouvel appareil triaxial récemment mis au point au Laboratoire 3SR à Grenoble (France). / In continuum damage models, the degradation of the elastic moduli, as the results of microscopic crackgrowth, is represented through damage variables. The evolution of damage variable is generally postulatedbased on the results of the experimental observations. Many such phenomenological damage modelshave been proposed in the literature. The purpose of this contribution is to develop a new procedurein order to obtain macroscopic damage evolution laws, in which the damage evolution is completelydeduced from micro-structural analysis. We use homogenization based on two-scale asymptotic developmentsto describe the overall behaviour starting from explicit description of elementary volumes withmicro-cracks. We consider quasi-brittle (time independent) and sub-critical (time dependent) criteria formicro-cracks propagation. Additionally, frictional contact is assumed on the crack faces. An appropriatemicro-mechanical energy analysis is proposed, leading to a damage evolution law that incorporates stiffnessdegradation, material softening, size effect, and unilaterality, different fracture behaviour in contactwithout and with friction. The information about micro-cracks is contained in the homogenized coefficientsand in the damage evolution law. The homogenized coefficients describe the overall response inthe presence of (possibly static) micro-cracks, as they are computed with the (quasi-) static microscopicsolution. The damage law contains the information about the evolution of micro-cracks, as a result ofthe energy balance in time during the microscopic propagation. The homogenized law is obtained in therate form. Effective coefficients are numerically computed for different crack lengths and orientations.This allows for the complete construction of the macroscopic laws. A first analysis concerns the localmacroscopic behaviour, for complex loading paths, in order to understand the behaviour predicted bythe two-scale model and the influence of micro structural parameters, like for example friction coefficient.Next, the FEM implementation of the macroscopic equations is performed and simulations for variouscompression tests are conducted. The results of the numerical simulations are compared with the experimentalresults obtained using a new true-triaxial apparatus recently developed at the Laboratory 3SRin Grenoble (France).
|
Page generated in 0.0362 seconds