• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilisation d'indicateurs des besoins en azote pour atténuer les pertes en nitrate associées à l'irrigation et à la fertilisation du brocoli /

Fortier, Elisabeth. January 2007 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2007. / Bibliogr.: f. 76-83. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
2

Utilisation d'indicateurs des besoins en azote pour atténuer les pertes en nitrate associées à l'irrigation et à la fertilisation du brocoli

Fortier, Elisabeth 12 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / Des recherches ont démontré une corrélation entre l'apport croissant d'azote et l'augmentation du rendement du brocoli (Brassica oleracea var italica). Toutefois, des contraintes environnementales et économiques forcent les agriculteurs d'aujourd'hui à gérer de manière très serrée la fertilisation azotée. Le but de cette recherche est d'évaluer l'utilité de certains indicateurs des besoins en azote disponibles sur le marché, en vue de diminuer les pertes en nitrate associées à l'irrigation et à la fertilisation du brocoli. La présente étude fait état d'une relation curvilinéaire positive entre le rendement vendable et l'apport croissant de fertilisants azotés et d'une relation linéaire pour le diamètre de l'inflorescence, le contenu en azote des têtes et des résidus et la biomasse aérienne laissée au champ. La précocité et l'étalement de la récolte ne sont pas affectés par l'apport d'azote. L'irrigation n'a eu aucun effet sur les paramètres de récolte, à l'exception de la tige creuse où une forte interaction entre l'azote et l'irrigation a été observée. Aucun lessivage n'a été constaté après la récolte lors d'une analyse de l'eau et d'échantillons de sol. Une réponse linéaire de la fertilisation sur le contenu en nitrate du profil 0-30 cm a été observée 6,5 semaines après la plantation, soit deux semaines après la dernière fertilisation, mais des taux de nitrate relativement faibles (10 à 86 kg/ha) ont été obtenus. Afin d'atteindre un juste équilibre dans l'apport d'azote, il importe de disposer d'outils permettant d'évaluer les besoins de la culture, et d'ainsi déduire les taux et la fréquence d'application des fertilisants. Certains de ces outils permettent de rencontrer de manière satisfaisante cette exigence. Parmi ceux-ci, le test de sève avec Merckoquant et Nitrachek, le lecteur de chlorophylle (SPAD), le lecteur de réflectance (GreenSeeker) et le lecteur de polyphénols (Dualex) ont été testés dans la culture du brocoli. Les résultats ont démontré que le test de sève est un outil sensible et efficace pour détecter des carences ou des excès d'azote. Le SPAD est efficace dans la détection de carence importante mais un niveau de saturation est rapidement atteint, ce qui limite son application. Le GreenSeeker est quant à lui inefficace puisqu'il réagit de manière quadratique à un excès de fertilisants. Finalement, le Dualex est un outil présentant un certain potentiel, puisqu'il est en mesure de détecter plus facilement les carences que les excès. Toutefois, les données de lectures brutes des lests sont trop variables dans le temps et dans l'espace pour que l'on puisse recommanda- son usage dans une grille de fertilisation. L'utilisation d'une parcelle de référence peut contourner cette problématique en annulant tout effet autre que celui de la fertilisation azotée et en stabilisant l'indice dans l'espace et le temps. L'utilisation d'un indice de référence n'a pu être validée clans la présente étude en raison du manque de données. L'instauration d'une parcelle de référence surfertilisée plutôt qu'une parcelle témoin sans apport d'azote est la meilleure option car, en plus de donner une indication du manque à combla- , la parcelle saturée est plus facile à mettre en place par le producteur. Une grille de fertilisation utilisant l'indice de saturation obtenu avec le test de sève est proposée.
3

Fabrication d'extraits bioactifs bénéfiques pour la santé et riches en glucoraphanine à partir de rejets industriels de Brassica oleracea (brocoli) en utilisant la technologie verte

Thomas, Minty 11 July 2019 (has links)
Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%... / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un IV matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à V l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Le brocoli est une excellente source de composés nutraceutiques ayant de nombreux effets sur la santé tels que les propriétés anticancéreuses, anti-diabétiques, antioxydantes et antimicrobiennes. Les glucosinolates, les polyphénols, les vitamines, les minéraux et les fibres alimentaires sont les principales molécules présentes dans le brocoli. La production annuelle mondiale de brocoli est de 21 millions de tonnes. On estime que 35 à 40% des cultures horticoles sont perdues en raison de pratiques agricoles inadéquates, générant d'énormes quantités de déchets agricoles. Ces cultures perdues pourraient être utilisées comme matières premières pour l'extraction et la purification d'ingrédients bioactifs destinés à l'industrie nutraceutique et alimentaire. L'objectif principal de ce projet était de développer une technique économique et respectueuse de l'environnement pour la fabrication d'un extrait riche en glucoraphanine à partir de rejets industriels de brocoli, en fournissant une voie alternative pour sa valorisation. Ce travail se concentre principalement sur l'identification, la caractérisation et la quantification des glucosinolates et des polyphénols présents dans 10 lots rejetés de graines de brocoli et de résidus industriels de brocoli tels que les fleurons, les tiges et le mélange de fleurons et de tiges. De plus, le procédé d'extraction de la glucoraphanine a été optimisé en utilisant des solvants verts tels que l'éthanol et l'eau. En outre, la glucoraphanine provenant d'extraits de brocoli bruts a été purifiée en utilisant des résines échangeuses d'ions par une Méthodologie de Surface de Réponse, basé sur le Box-Behnken Design (BBD) et l'Analyse des Composants Principaux. Enfin, des expériences pilotes ont été réalisées en utilisant les paramètres optimisés pour vérifier leur adéquation pour une application industrielle. La caractérisation et la quantification simultanées par UPLC MS/MS ont indiqué la présence de 12 glucosinolates (principalement de la glucoraphanine) et de 5 polyphénols dans les sous-produits du brocoli. La teneur en glucosinolates variait de 0,2 à 2% de matière sèche (MS), tandis que les polyphénols étaient inférieurs à 0,02% de MS. L'abondance relative de la glucoraphanine dans les sous-produits du brocoli a fait un matériau de départ prometteur pour la fabrication de compléments alimentaires fonctionnels. De plus, un procédé d'extraction de la glucoraphanine écologique et à base de solvant a été optimisé pour les sous-produits de graines de brocoli et de fleurons. Un extracteur à agitation magnétique unique a maximisé l'extractibilité de la glucoraphanine. Les paramètres d'extraction optimisés étaient de 50% et 70% d'éthanol aqueux extraits pendant 60 et 30 minutes à 60 et 23°C pour les sous-produits de graines et de fleurons, respectivement, en utilisant un rapport matière/solvant de 1:20. Le procédé vert optimisé a donné un rendement de glucoraphanine de 55,5 g/kg MS de graines et de 4,3 g/kg MS de fleurons. Le procédé vert développé dans cette étude a fourni 37 et 81 fois plus d'extractibilité de la glucoraphanine que la technique analytique standard basée sur le méthanol. Enfin, un procédé de purification de la glucoraphanine respectueux de l'environnement et industriellement réalisable a été développé en utilisant des résines échangeuses d'ions par approche de surface de réponse pour les sous-produits de graines de brocoli et de fleurons. Un ensemble de 27 essais, 3 niveaux dans le BBD ont été proposés pour les résines cationiques et anioniques en série, pour maximiser les réponses du processus. La purification de la glucoraphanine à partir de l'extrait de graines de brocoli en utilisant une résine cationique a permis une récupération maximale de 94% et une pureté de 14% en utilisant 1:5 du rapport matière/résine pendant 91 min à 80 rpm/min. Dans le cas de la résine anionique, les variables expérimentales de 1:5, 140 min, 160 rpm/min et 7% d'hydroxyde d'ammonium dans de l'éthanol à 70% ont donné un rendement de 72% et une pureté de 37%. Alors que pour les rejets industriels de fleurons de brocoli, les paramètres optimisés pour la purification de la glucoraphanine étaient un ratio matière/résine de 1:1.87, un temps de contact de 30 min, une vitesse d'agitation de 80 rpm/min et un solvant d'élution de 100% eau. La purification subséquente de l'extrait cationique en utilisant la résine anionique a été réalisée en utilisant les paramètres expérimentaux optimisés du rapport matière/résine de 1:1.3 pendant 170 min à 140 rpm/min et éluée en utilisant 7% d'hydroxyde d'ammonium dans 70% d'éthanol, fournissant une récupération de 78% et pureté de 5%. Enfin, les paramètres du processus d'extraction et de purification optimisés à l'échelle du laboratoire ont été extrapolés à l'échelle pilote pour la fabrication d'extraits en poudre, indiquant que le procédé optimisé était très efficace pour récupérer la glucoraphanine avec une grande pureté même à grande échelle. Par conséquent, la présente étude a mis au point un procédé écologique efficace et industriellement viable pour la fabrication d'extraits de rejets industriels de brocoli. Le processus optimisé a fourni une voie alternative économiquement viable pour la valorisation de la récolte perdue qui nous rapproche de la sécurité alimentaire et la durabilité environnementale. / Broccoli is an excellent source of nutraceutical compounds with many health effects such as anticancerous, anti-diabetic, antioxidant and anti-microbial properties. Glucosinolates, polyphenols, vitamins, minerals, dietary fibers are the most important molecules present in broccoli. The global annual production of broccoli is 21 million tons. It is estimated that 35-40% of the horticultural crops are lost due to inadequate agricultural practices, generating huge quantities of agro-waste. These lost crops, could be used as raw materials for the extraction and purification of bioactive ingredients for the nutraceutical and food industry. The main objective of this project was to develop an economical and environmental friendly technique for the fabrication of an extract rich in glucoraphanin from broccoli industrial discards, providing an alternative route for its valorization. This work predominantly focuses on the identification, characterization and quantification of glucosinolates and polyphenols present in 10 rejected lots of broccoli seeds and broccoli industrial residues such as florets, stalks and the mixture of florets and stalks. Additionally, the glucoraphanin extraction process was optimized using green solvents such as ethanol and water. Further, the glucoraphanin from crude broccoli extracts were purified using ion exchange resins by Response Surface Methodology, based on Box-Behnken Design (BBD) and Principle component analysis. Finally, pilot experiments were performed using the optimized parameters to verify their industrial applicability. The simultaneous characterization and quantification by UPLC MS/MS indicated the presence of 12 glucosinolates (predominantly glucoraphanin) and 5 polyphenols in broccoli by-products. The glucosinolates content varied from 0.2 to 2% dry weight (DW), whereas, the polyphenols were less than 0.02% DW. The relative abundance of glucoraphanin in broccoli by-products makes it a promising starting material for the fabrication of functional food supplements. Further, an eco-friendly, solvent based glucoraphanin extraction process was optimized for broccoli seeds and florets by-products. A single batch magnetically stirred extractor was found to maximize glucoraphanin extractability. The optimized extraction parameters were 50% and 70% aqueous ethanol extracted for 60 and 30 minutes at 60 and 23°C for seeds and florets by-products, respectively, using a feed to solvent ratio of 1:20. The optimized green process provided a glucoraphanin yield of 55.5 g/Kg DW seeds and 4.3 g/kg DW florets by-products. The green process developed in this study provided 37 and 81 times more glucoraphanin extractability than the standardized methanol based analytical technique. Finally, an environmental friendly and industrially feasible glucoraphanin purification process was developed using ion exchange resins by response surface approach for broccoli seeds and florets by-products. A 27 run, 3 level BBD, were proposed for cationic and anionic resins in series, to maximize the process responses. Glucoraphanin purification from broccoli seeds extract using cationic resin provided a maximal recovery of 94% and purity of 14% using 1:5 of feed to resin ratio for 30 min, at 80 rpm agitation speed and eluting solvent concentration of 100% water. For anionic resin, the experimental variables of 1:5, 140 min, 160 rpm and 7% ammonium hydroxide in 70% ethanol provided a process efficiency of 72% and a purity of 37%. Whereas, for broccoli florets industrial discards, the optimized process parameters for the purification of glucoraphanin were a feed to resin ratio of 1:1.87, contact time of 30 min, agitation speed of 80 rpm and eluting solvent of 100% water. Subsequent purification of the cationic extract using the anionic resin was performed using the optimized experimental parameters of feed to resin ratio of 1:1.3 for 170 min at 140 rpm and eluted using 7% ammonium hydroxide in 70% ethanol, providing a recovery of 78% and purity of 5%. Finally, the laboratory scale optimized extraction and purification process parameters was extrapolated onto the pilot scale for the fabrication of powdered extracts, indicated that the optimized process was highly efficient in recovering glucoraphanin with high purity even on large scale operation. Hence, the present study developed an efficient, industrially viable green process, for the fabrication of extracts from broccoli industrial discards. The optimized process provided an economically feasible alternative route for the valorization of the lost crop bringing us closer to food security and environmental sustainability.
4

Abiotic stress hormesis : hormetic stresses to maintain quality and enhance glucosinolates and phenolic compounds in broccoli (Brassica oleracea var. italica) during storage

Duarte Sierra, Arturo 23 April 2018 (has links)
Le brocoli (Brassica oleracea var. italica) est un légume devenu populaire grâce à ses caractéristiques nutritionnelles et bioctives qui sont associées entre autres à la prévention de certaines maladies chroniques. L'utilisation de stress abiotiques tels que UV-C comme traitement de pré-entreposage a montré un grand potentiel pour l'induction de la résistance aux maladies et la préservation de la qualité des produits frais, et il est de plus en plus évident qu'il existe un potentiel pour améliorer les métabolites secondaires. L'objectif de ce travail a été, d'abord, d'établir si divers stress abiotiques, UV-B, UV-C, la chaleur, l'ozone, le peroxyde d'hydrogène, l'éthanol, et méthyl jasmonate (MeJA), induisent le phénomène d’hormèse. L'effect de ces traitements sur certains paramètres associés à la qualité des fleurons de brocoli tels que: la couleur, la perte de poids, la teneur en glucosinolates et en composés phénoliques. La chaleur et l'éthanol ont été les meilleurs traitements pour le retarder le jaunissement des fleurons, mais UV-C et UV-B étaient également efficaces pour maintenir la couleur verte de fleurons dans l’entreposage. D'autre part, la capacité antioxydant des fleurons a été principalement renforcée par les traitements d’UV-B et de chaleur. Le paramètre le plus important dans cette recherche était la teneur en glucosinolates de fleurons qui a été influencé positivement par le traitement à l’ozone et au peroxyde d'hydrogène, et dans une moindre mesure par le traitement d’UV-B. Il a été conclu que les stress abiotiques peuvent influencer favorablement soit la qualité ou l’augmentation de glucosinolates dans les fleurons pendant l’entreposage, mais pas le deux. Parmi les agents stressants utilisés, la lumière UV-B a été le plus efficace à maintenir la qualité et à induire une augmentation des composantes phytochimiques dans le broccoli. / Broccoli (Brassica oleracea var. Italica) has become popular thanks to its health properties that are associated with the prevention of certain chronic diseases. The use of abiotic stresses such as UV-C as pre-storage treatment has shown great potential for induction of disease resistance in and preservation of quality of fresh produce, and it is becoming increasingly clear that there is potential for enhancing secondary metabolites. The objective of this work was, first, to establish whether various abiotic stresses, UV-B UV-C, heat, ozone, hydrogen peroxide, ethanol, and the plant signalling molecule, methyl jasmonate (MeJA), may induce hormesis in broccoli florets on color retention response; and second, to determine the effect of various abiotic stresses on quality, mainly color retention and weight loss; the contents of glucosinolates and phenolic compounds in florets during storage. Heat and ethanol were the best treatments for delaying yellowing florets, but UV-C and UV-B were also effective at a lower extent. On the other hand, the antioxidant capacity of the florets was mostly enhanced by UV-B and heat treatments. The most important enquiry in this research was the augmentation of glucosinolates titers, which was influenced by the treatment with ozone and hydrogen peroxide, and to a less extent by UV-B. It was concluded that abiotic stresses could influence favourably either the quality or the enhancement of glucosinolates in broccoli during storage and not both. Among the considered stressing factors, UV-B was the most effective for maintenance of quality as well as to elevate the levels of phytochemicals in broccoli.
5

Impact of pesticides on indicator and pathogenic microorganism persistence under laboratory and field conditions

Tran, Thi Phuong Hoa 08 1900 (has links)
On s’intéresse aux impacts des pesticides sur la microflore des plantes surtout dans le contexte des légumes contaminés par des agents pathogènes. Le but de cette étude est d'évaluer l'impact de certains pesticides sur la persistance de micro-organismes indicateurs et pathogènes. En laboratoire, la persistance d’E. coli et de Salmonella en présence de quatre pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF, Serenade MAX) a été étudiée. Les plaques de Pétrifilm et le milieu sélectif XLD sont utilisés pour énumérer les populations d’E. coli et de Salmonella. Il a été démontré que le Serenade MAX favorisait la croissance microbienne, le Bioprotec CAF et le Ripcord 400EC soutenaient la survie microbienne et le Copper 53W inhibait la croissance, à la fois d’E. coli et de Salmonella. En conditions terrain, Ripcord 400EC, Copper 53W, Bioprotec CAF ont été étudiés sur une culture de brocoli irriguée avec de l'eau expérimentalement contaminée par E. coli. Dans tous les traitements, un impact de l’irrigation a été observé sur les populations de levures et de moisissures (diminution) et les bactéries aérobies totales (augmentation). Une prévalence supérieure d’E. coli a été observée dans les parcelles traitées avec le Bioprotec CAF comparativement aux traitements au Copper 53W, ce qui est en accord avec les résultats observés lors de l'essai en laboratoire. Cependant, l'analyse statistique n'a montré aucune différence significative entre les traitements appliqués. Les effets directs des pesticides sur les micro-organismes sont confirmés dans des conditions de laboratoire mais demeurent méconnus dans les conditions expérimentales au champ. / There is a concern about the impact of pesticide on plant microflora, especially in the context of vegetables contaminated with pathogens. The aim of this study was to evaluate the impact of various pesticides on indicator and pathogenic microorganisms’ persistence. In laboratory, survival of E. coli and Salmonella in four pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF, Serenade MAX) was evaluated. Petrifilm count plates and XLD agar were used to enumerate E. coli and Salmonella counts. Results showed a direct effect of various pesticides on microorganisms: Serenade MAX promoted microbial growth; Bioprotec CAF and Ripcord 400EC supported microbial survival; and Copper 53W inhibited both E. coli and Salmonella growth. In field conditions, three pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF) were studied on broccoli irrigated with E. coli - contaminated water. Broccoli samples were analyzed to determine E. coli, mold and yeast, and total aerobic counts. Irrigation resulted in mold and yeast counts decline but aerobic bacteria populations increased slightly in all treatments. Higher E. coli prevalence in Bioprotec CAF treatments compared to Copper 53W treatments was consistent with results observed during the laboratory assay. However, statistical analysis showed no significant difference between treatments. The direct effect of pesticides on microorganisms under laboratory conditions was demonstrated but it is still unclear under experimental field conditions.
6

Impact of pesticides on indicator and pathogenic microorganism persistence under laboratory and field conditions

Tran, Thi Phuong Hoa 08 1900 (has links)
On s’intéresse aux impacts des pesticides sur la microflore des plantes surtout dans le contexte des légumes contaminés par des agents pathogènes. Le but de cette étude est d'évaluer l'impact de certains pesticides sur la persistance de micro-organismes indicateurs et pathogènes. En laboratoire, la persistance d’E. coli et de Salmonella en présence de quatre pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF, Serenade MAX) a été étudiée. Les plaques de Pétrifilm et le milieu sélectif XLD sont utilisés pour énumérer les populations d’E. coli et de Salmonella. Il a été démontré que le Serenade MAX favorisait la croissance microbienne, le Bioprotec CAF et le Ripcord 400EC soutenaient la survie microbienne et le Copper 53W inhibait la croissance, à la fois d’E. coli et de Salmonella. En conditions terrain, Ripcord 400EC, Copper 53W, Bioprotec CAF ont été étudiés sur une culture de brocoli irriguée avec de l'eau expérimentalement contaminée par E. coli. Dans tous les traitements, un impact de l’irrigation a été observé sur les populations de levures et de moisissures (diminution) et les bactéries aérobies totales (augmentation). Une prévalence supérieure d’E. coli a été observée dans les parcelles traitées avec le Bioprotec CAF comparativement aux traitements au Copper 53W, ce qui est en accord avec les résultats observés lors de l'essai en laboratoire. Cependant, l'analyse statistique n'a montré aucune différence significative entre les traitements appliqués. Les effets directs des pesticides sur les micro-organismes sont confirmés dans des conditions de laboratoire mais demeurent méconnus dans les conditions expérimentales au champ. / There is a concern about the impact of pesticide on plant microflora, especially in the context of vegetables contaminated with pathogens. The aim of this study was to evaluate the impact of various pesticides on indicator and pathogenic microorganisms’ persistence. In laboratory, survival of E. coli and Salmonella in four pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF, Serenade MAX) was evaluated. Petrifilm count plates and XLD agar were used to enumerate E. coli and Salmonella counts. Results showed a direct effect of various pesticides on microorganisms: Serenade MAX promoted microbial growth; Bioprotec CAF and Ripcord 400EC supported microbial survival; and Copper 53W inhibited both E. coli and Salmonella growth. In field conditions, three pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF) were studied on broccoli irrigated with E. coli - contaminated water. Broccoli samples were analyzed to determine E. coli, mold and yeast, and total aerobic counts. Irrigation resulted in mold and yeast counts decline but aerobic bacteria populations increased slightly in all treatments. Higher E. coli prevalence in Bioprotec CAF treatments compared to Copper 53W treatments was consistent with results observed during the laboratory assay. However, statistical analysis showed no significant difference between treatments. The direct effect of pesticides on microorganisms under laboratory conditions was demonstrated but it is still unclear under experimental field conditions.
7

Réévaluation des besoins en azote, phosphore et potassium des cultures de brocoli, de chou et de chou-fleur en sols minéraux au Québec

Lachapelle, Jean-Mathieu 17 April 2018 (has links)
La grande majorité des grilles de recommandation que l'on retrouve dans le Guide de référence en fertilisation (CRAAQ, 2003) n'ont pas été réévaluées depuis plusieurs décennies et suscitent de nombreuses interrogations quant à leur validité. Une mise à jour de ces grilles, basée sur les régies de production actuelle, et intégrant les besoins réels des cultures est donc devenue indispensable. Ce projet de maîtrise vise à l'élaboration d'un modèle d'évaluation des besoins en azote, phosphore et potassium dans les cultures du chou, du chou-fleur et du brocoli en sols minéraux au Québec. Pour ce faire, des essais de fertilisation ont été réalisés, entre 2003 et 2008, dans quatre régions de la province de Québec, soit la Montérégie, les Laurentides, Lanaudière et Québec (Ile d'Orléans). Au total, toutes cultures confondues, 72 essais en azote, 60 en phosphore et 38 en potassium ont été implantés chez des producteurs maraîchers. Les traitements évalués étaient les suivants : 3 à 6 doses d'azote variant de 0 à 350 kg N/ha, 4 à 5 doses de phosphore variant de 0 à 300 kg P205/ha, et 4 doses de potassium variant de 0 à 240 kg K20/ha. Le dispositif expérimental était en tiroirs (split-plot) avec trois répétitions. Les étapes de réalisation du modèle d'évaluation des besoins étaient basées en partie sur le modèle ayant servi à l'élaboration de la nouvelle grille de fertilisation en phosphore pour la culture de la pomme de terre, telle que revue par Samson et collaborateurs (2008). Ces essais ont permis de déterminer un intervalle de fertilisation azoté pour chacune des cultures, soit de 160 à 200 kg N/ha pour le brocoli, de 190 à 240 kg N/ha pour le chou et de 130 à 185 kg N/ha pour le chou-fleur. Quelques essais de fractionnement de l'azote ont eu lieu de 2003 à 2005. Dans la majorité des cas, l'analyse statistique des fractionnements de l'azote n'a pas montré de différences significatives. Les doses proposées pour le phosphore et le potassium diminuent et varient de 0 à 150 kg P205 selon le rapport P/AlM_m dans le sol et de 0 à 180 kg K20/ha selon la teneur du sol en Kyi_ui. En comparant ces doses proposées avec celles de ia grille de recommandation actuelle du Guide de référence en fertilisation (CRAAQ, 2003), il y a une diminution de 37,5 % pour le phosphore et de 21,7 % pour le potassium. L'analyse de la variance ne révèle aucune différence significative au niveau des prélèvements en azote, en phosphore et en potassium en fonction des doses testé

Page generated in 0.0611 seconds