• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reducing Drifts in Buckling Restrained Braced FramesThrough Elastic Stories

Craft, Jennifer Lorraine 01 March 2015 (has links) (PDF)
It is possible to reduce residual and maximum drifts in buildings by adding “elastic stories” that engage gravity columns in seismic response. An elastic story is a story wherein the buckling restrained brace frame (BRBF) size is increased to prevent yielding when an earthquake occurs. Buildings ranging from 4–16 stories were designed with various elastic story brace sizes and locations to determine the optimal combination to best reduce drifts. Gravity column stiffnesses were also varied in elastic story buildings to determine the effects on drifts. Computer models were used to analyze these buildings under a suite of earthquakes. Adding elastic stories reduce residual drifts 34% to 65% in 4- to 16-story BRBF buildings. General recommendations are made to achieve optimal reductions in drifts. For buildings with six or more stories, drifts were generally reduced most when an elastic story was added to every 4th story starting at level 1 (the bottom story). The most effective size for the braces in the elastic story appears to be three times the original brace size. For buildings with less than six stories, adding a three times elastic story to the bottom level was observed to reduce drifts the most. Further research is also recommended to confirm the optimal location and size of elastic stories for buildings with differing number of stories. Increasing gravity column stiffnesses in buildings with elastic stories helps to further reduce drifts, however it may not be economical. Residual drifts were observed to decrease significantly more than maximum drifts when elastic stories were added to buildings. Maximum drifts generally decreased at some levels, but also increased at others when elastic stories were used.
2

Performance Based Analysis of a Steel Braced Frame Building with Buckling Restrained Braces

Burkholder, Margaux Claire 01 April 2012 (has links) (PDF)
This paper provides an assessment of the seismic performance of a code-designed buckling restrained braced frame building using the performance-based analysis procedures prescribed in ASCE 41-06. The building was designed based on the standards of the ASCE 7-05 for a typical office building located in San Francisco, CA. Nonlinear modeling parameters and acceptance criteria for buckling restrained brace components were developed to match ASCE 41-06 design standards for structural steel components, since buckling restrained braces are not currently included in ASCE 41-06. The building was evaluated using linear static, linear dynamic, nonlinear static and nonlinear dynamic analysis procedures. This study showed that the linear procedures produced more conservative results, with the building performing within the intended Life Safety limit, while the nonlinear procedures predicted that the building performed closer to the Immediate Occupancy limit for the 2/3 maximum considered earthquake hazard. These results apply to the full maximum considered earthquake hazard as well, under which the building performed within the Collapse Prevention limit in the linear analysis results and within the Life Safety limit in the nonlinear analysis results. The results of this paper will provide data for the engineering profession on the behavior of buckling restrained braced frames as well as performance based engineering as it continues to evolve.
3

ASCE 7–05 Design Rule for Relative Strength in a Tall Buckling-Restrained Braced Frame Dual System

Aukeman, Lisa J 01 March 2011 (has links) (PDF)
In mid- to high-rise structures, dual systems (DS) enable a structural designer to satisfy the stringent drift limitations of current codes without compromising ductility. Currently, ASCE 7-05 permits a variety of structural systems to be used in combination as a dual system yet the design requirements are limited to the following statement: Moment frames must be capable of resisting 25% of the seismic forces while the moment frames and braced frames or shear walls must be capable of resisting the entire seismic forces in proportion to their relative rigidities. This thesis assesses the significance of the 25% design requirement for the secondary moment frames (SMF) in dual systems with consideration of current structural engineering practice. Three 20-story buckling-restrained braced frame (BRBF) dual system structures were designed with varying relative strengths between the braced and special moment frame systems. The SMF system wa designed for 15%, 25%, and 40% of seismic demands and the BRBF system design has been adjusted accordingly based on its relative stiffness with respect to the moment frame. These structures were examined with nonlinear static and nonlinear dynamic procedures with guidance from ASCE 41-06. The drift, displacement and ductility demands, and the base shear distribution results of this study show similar responses of the three prototype structures. These results indicate a secondary moment frame designed to less than 25% of seismic demands may be adequate for consideration as a dual system regardless of the 25% rule.
4

Hybrid Steel Frames

Atlayan, Ozgur 22 April 2013 (has links)
The buildings that are designed according to the building codes generally perform well at severe performance objectives (like life safety) under high earthquake hazard levels. However, the building performance at low performance objectives (like immediate occupancy) under low earthquake hazards is uncertain. The motivation of this research is to modify the design and detailing rules to make the traditional systems perform better at multi-level hazards. This research introduces two new structural steel systems: hybrid Buckling Restrained Braced Frames (BRBF) and hybrid steel Moment Frames (MF). The "hybrid" term for the BRBF system comes from the use of different steel material including carbon steel (A36), high-performance steel (HPS) and low yield point (LYP) steel. The hybridity of the moment frames is related to the sequence in the plastification of the system which is provided by using weaker and stronger girder sections. Alternative moment frame connections incorporating the use of LYP steel plates are also investigated. The hybrid BRBF approach was evaluated on seventeen regular (standard) frames with different story heights, seismic design categories and building plans. By varying the steel areas and materials in the BRB cores, three hybrid BRBFs were developed for each regular (standard) frame and their behavior was compared against each other through pushover and incremental dynamic analyses. The benefits of the hybridity were presented using different damage measures such as story accelerations, interstory drifts, and residual displacements. Collapse performance evaluation was also provided. The performance of hybrid moment frames was investigated on a design space including forty-two moment frame archetypes. Two different hybrid combinations were implemented in the designs with different column sections and different strong column-weak beam (SC/WB) ratios. The efficiency of the hybrid moment frame in which only the girder sizes were changed to control the plastification was compared with regular moment frame designs with higher SC/WB ratios. As side studies, the effect of shallow and deep column sections and SC/WB ratios on the moment frame behavior were also investigated.   In order to provide adequate ductility in the reduced capacity bays with special detailing, alternative hybrid moment frame connections adapting the use of low strength steel were also studied. / PhD
5

Performance-based assessments of buckling-restrained braced steel frames retrofitted by self-centering shape memory alloy braces

Pham, Huy 20 September 2013 (has links)
Concrete-filled buckling restrained braces (BRBs) was first developed in 1988 in Tokyo, Japan, to prevent the steel plates in the core portion from buckling, leading the steel core to exhibiting a more stable and fully hysteretic loop than conventional steel braces. However, past studies have shown that buckling restrained braced frames (BRBFs) have a large residual deformation after a median or high seismic event due to steel’s residual strain. In order to address this issue, innovative self-centering SMA braces are proposed and installed in the originally unbraced bays in existing BRBFs to become a hybrid frame system where the existing steel BRBs dissipate energy induced by external forces and the newly added self-centering SMA braces restore the building configuration after the steel BRBs yield. A case study of conventional three-story BRBF retrofitted by the proposed self-centering SMA braces is carried out to develop systematic retrofit strategies, to investigate the structural behavior, and to probabilistically assess their seismic performance in terms of interstory drifts, residual drifts, and brace deformation, as compared to the original steel BRB frames. Finally, the developed brace component fragility curves and system fragility curves will be further used for the assessment of downtime and repair cost.
6

Buckling restrained braced frames as a seismic force resisting system

Fuqua, Brandon W. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / The hazards of seismic activity on building structures require that engineers continually look for new and better methods of resisting seismic forces. Buckling restrained braced frames (BRBF) are a relatively new lateral force resisting system developed to resist highly unpredictable seismic forces in a very predictable way. Generally, structures with a more ductile lateral force resisting system perform better in resisting high seismic forces than systems with more rigid, brittle elements. The BRBF is a more ductile frame choice than special concentrically braced frames (SCBF). The ductility is gained through brace yielding in both compression and tension. The balanced hysteretic curve this produces provides consistent brace behavior under extreme seismic loads. However regular use of the BRB is largely limited to Japan where the brace type was first designed. The wide acceptance of buckling restrained braced frames requires the system to become easily designable, perform predictably, and common to engineers. This report explains the design process to help increase knowledge of the design and background. This report also details a comparison of a BRBF to a SCBF to give familiarity and promote confidence in the system. The design process of the BRBF is described in detail with design calculations of an example frame. The design process is from the AISC Seismic Provisions with the seismic loads calculated according to ASCE 7 equivalent lateral force procedure. The final members sizes of the BRBF and SCBF are compared based on forces and members selected. The results of the parametric study are discussed in detail.

Page generated in 0.1297 seconds