• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reducing Residual Drift in Buckling-Restrained Braced Frames by Using Gravity Columns as Part of a Dual System

Boston, Megan 19 April 2012 (has links) (PDF)
Severe earthquakes cause damage to buildings. One measure of damage is the residual drift. Large residual drifts suggest expensive repairs and could lead to complete loss of the building. As such, research has been conducted on how to reduce the residual drift. Recent research has focused on self-centering frames and dual systems, both of which increase the post-yield stiffness of the building during and after an earthquake. Self-centering systems have yet to be adopted into standard practice but dual systems are used regularly. Dual systems in steel buildings typically combine two types of traditional lateral force resisting systems such as bucking restrained braced frames (BRBFs) and moment resisting frames (MRFs). However, the cost of making the moment connections for the MRFs can make dual systems costly. An alternative to MRFs is to use gravity columns as the secondary system in a dual system. The gravity columns can be used to help resist the lateral loads and limit the residual drifts if the lateral stiffness of the gravity columns can be activated. By restraining the displacement of the gravity columns, the stiffness of the columns adds to the stiffness of the brace frame, thus engaging the lateral stiffness of the gravity columns. Three methods of engaging the stiffness of the gravity columns are investigated in this thesis; one, fixed ground connections, two, a heavy elastic brace in the top story, and three, a heavy elastic brace in the middle bay. Single and multiple degree of freedom models were analyzed to determine if gravity columns can be effective in reducing residual drift. In the single degree of freedom system (SDOF) models, the brace size was varied to get a range of periods. The column size was varied based on a predetermined range of post-yield stiffness to determine if the residual drift decreased with higher post-yield stiffness. Three and five story models were analyzed with a variety of brace and column sizes and with three different configurations to activate the gravity columns. Using gravity columns as part of a dual system decreases the residual drift in buildings. The results from the SDOF system show that the residual drift decreased with increased post-yield stiffness. The three and five story models showed similar results with less residual drift when larger columns were used. Further, the models with a heavy gravity column in the top story had the best results.
2

Reducing Drifts in Buckling Restrained Braced FramesThrough Elastic Stories

Craft, Jennifer Lorraine 01 March 2015 (has links) (PDF)
It is possible to reduce residual and maximum drifts in buildings by adding “elastic stories” that engage gravity columns in seismic response. An elastic story is a story wherein the buckling restrained brace frame (BRBF) size is increased to prevent yielding when an earthquake occurs. Buildings ranging from 4–16 stories were designed with various elastic story brace sizes and locations to determine the optimal combination to best reduce drifts. Gravity column stiffnesses were also varied in elastic story buildings to determine the effects on drifts. Computer models were used to analyze these buildings under a suite of earthquakes. Adding elastic stories reduce residual drifts 34% to 65% in 4- to 16-story BRBF buildings. General recommendations are made to achieve optimal reductions in drifts. For buildings with six or more stories, drifts were generally reduced most when an elastic story was added to every 4th story starting at level 1 (the bottom story). The most effective size for the braces in the elastic story appears to be three times the original brace size. For buildings with less than six stories, adding a three times elastic story to the bottom level was observed to reduce drifts the most. Further research is also recommended to confirm the optimal location and size of elastic stories for buildings with differing number of stories. Increasing gravity column stiffnesses in buildings with elastic stories helps to further reduce drifts, however it may not be economical. Residual drifts were observed to decrease significantly more than maximum drifts when elastic stories were added to buildings. Maximum drifts generally decreased at some levels, but also increased at others when elastic stories were used.
3

Analytical and Experimental Investigation of Improving Seismic Performance of Steel Moment Frames Using Synthetic Fiber Ropes

Ryan, John C. 04 December 2006 (has links)
The presented research investigated the viability of a double-braided synthetic fiber rope for providing improved performance of steel moment frames subjected to earthquake-induced ground motions. A series of experimental tests, including a 1:3-scale dynamic test and 1:6-scale shaking table tests, was conducted using Northridge ground-motion input. A series of nonlinear dynamic analytical studies, using DRAIN-2DX, was conducted to develop the experimental tests. Throughout experimental testing, the ropes exhibited a hyper-elastic loading response and a reduced-stiffness unloading response. A conditioning cycle was defined as a loading cycle induced in the rope above the highest load expected to be experienced by the rope, and was determined to be requisite for ropes intended to be used for the stated objectives of the research program. After experiencing a conditioning cycle, the rope response returned to initial conditions without permanent deformation, demonstrating repeatability of response through several loading cycles below the conditioning load. In the 1:6-scale shaking-table experiments, the ropes drastically improved the performance of the steel moment frames. Maximum and residual drift were reduced significantly, with a corresponding minimal increase to the maximum base shear. Base shear was reduced at several peaks subsequent to the initial pulse of the Northridge ground-motion input. The analytical model developed was excellent for predicting elastic response of the 1:6-scale shaking table experiments and adequate for the purpose of planning shaking table studies. Correlation of peak rope forces between the analytical model and experimental results was poor, and was attributed to limitations of the pre-defined elements used to represent the rope devices in the software program. The inability of the elements to capture the complex unloading response of the rope was specifically noted. / Ph. D.
4

Damage-Free Seismic-Resistant Self-Centering Friction-Damped Braced Frames with Buckling-Restrained Columns

Blebo, Felix C. 26 June 2015 (has links)
No description available.

Page generated in 0.0564 seconds