21 |
The elasto-plastic localised buckling behaviour of cold-formed sectionsJefferson, David January 1989 (has links)
No description available.
|
22 |
Vertical buckling of heated submarine pipelinesMaschner, Emil Alexis January 1996 (has links)
No description available.
|
23 |
Analysis Of Sinusoidal And Helical Buckling Of Drill String In Horizontal Wells Using Finite Element MethodArpaci, Erdogan 01 August 2009 (has links) (PDF)
The number of horizontal wells is increasing rapidly in all over the world with the growth of new technological developments. During horizontal well drilling, much more complex problems occur when compared with vertical well drilling, such as decrease in load transfer to the bit, tubular failure, tubular fatigue and tubular lock-up. This makes selection of appropriate tubular and making the right drill string design more important. As the total compression load on the horizontal section increases, the behavior of the tubular changes from straight to sinusoidal buckling, and if the total compression load continues to increase the behavior of the tubular changes to helical buckling. Determination of critical buckling loads with finite element method (FEM) in horizontal wells is the main objective of this study. Initially, a computer program (ANSYS) that uses FEM is employed to simulate different tubular and well conditions. Four different pipe sizes, four different wellbore sizes and three different torque values are used to model the cases. Critical buckling load values corresponding to significant variables are collected from these simulated cases. The results are classified into different buckling modes according to the applied weight on bit values and the main properties of the simulated model, such as modulus of elasticity, moment of inertia of tubular cross section, weight per unit length of tubular and radial clearance between the wellbore and the tubular. Then, the boundary equations between the buckling modes are obtained. The equations developed in this thesis by simulating the cases for the specific tubular sizes are used to make a comparison between the critical buckling load values from the models in the literature and this work. It is observed that the results of this work fit with literature models as the tubular size increases. The influence of torque on critical buckling load values is investigated. It is observed that torque has a slight effect on critical buckling load values. Also the applicability of ANSYS for buckling problems was revealed by comparing the ANSYS results with the literature models& / #8217 / results and the experimental study in the literature.
|
24 |
Finite Element Buckling Analysis of BeamsLu, Hsueh-Lin 23 July 2003 (has links)
In the present study, the buckling behavior of beams is analyzed by a plane strain finite element. The displacement-type finite element formulation based on two-dimensional elasticity of a buckling beam leads to an eigenvalue problem and is transformed again into another type of eigenvalue problem to eliminate iterations and possible difficulty during iterations and to obtain the various critical loads simultaneously.
Comparing with conventional beam theories, the present approach needs no approximations or assumptions except that the width-to thickness ratio should be large enough for the beam to be considered as a plane strain case. Theoretically the present method should be more accurate than conventional beam theories and attractive than iterative method if the same accuracy is obtained, due to the economy in computation of the present method.
Buckling strength under different beam geometry, type of loading, and boundary condition by the present approach will be compared with those by iterative method and various beam theories to test its validation and accuracy.
|
25 |
Postbuckling failure of composite plates with central holes /Lee, Ho Hyung, January 1991 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 304-311). Also available via the Internet.
|
26 |
Analytic expression of the buckling loads for stiffened plates with bulb-flat flanges /Wilmer, Archie. January 2003 (has links) (PDF)
Thesis (Ph. D. in Applied Mathematics)--Naval Postgraduate School, June 2003. / Dissertation supervisor: Don Danielson. Includes bibliographical references (p. 99-100). Also available online.
|
27 |
Experimental study of buckling behaviour of thin plate with slot /Ng, Ka-shain. January 1983 (has links)
Thesis--M. Sc.(Eng.), University of Hong Kong, 1983.
|
28 |
Nonlinear mechanics of composite materialsAlur, Kashyap 08 June 2015 (has links)
Composite materials have been an area of active research in recent years due to the possibility of obtaining multifunctional structures. Viscoelastic layered composites with parallel plane layers consisting of a stiff constituent and a soft viscoelastic constituent are of particular interest as they have been shown to exhibit simultaneous high stiffness and high damping. Such materials would be useful in structural applications and in high vibration environments such as in a vehicle or machinery. They would provide the rigidity required while simultaneously dissipating mechanical energy.
The finite deformation mechanics of parallel plane viscoelastic layered composites has not been extensively studied. Under compressive loads they are very susceptible to instabilities. Buckling, for example is an elastic instability seen in load bearing materials. Since viscoelastic materials are rate and time dependent, the buckling modes for these composites not only depend on these factors, but also on the volume fraction of the stiff constituent. Three different cases are identified in the buckling and post-buckling response of these composites: non-dilute (high volume fraction), transition (intermediate volume fraction) and dilute (small volume fraction) cases.
Due to buckling from the application of prestrain, the stiffness and damping of these composites can be tuned by orders of magnitude. Adaptive and multifunctional materials can be designed taking advantage of this idea and the rate dependence of the modes of deformation.
|
29 |
Dynamic buckling of thin metallic rings under external pressureMainy, Aurélien 19 July 2012 (has links)
The main aim of this thesis is to gain insight through experiments into how the deformation characteristics of a thin ring made of a metallic material such as aluminum depend on the strain-rate. More precisely, this study investigates the buckling behavior of thin metallic rings subjected to a dynamic radial compressive loading. To do so, a total of twelve experiments were performed: three experiments for each of four load levels. The specimens used were aluminum 6061-O circular rings, having a mean radius of 15.5 mm with a radius-to-thickness ratio of 31. The external pressure acting on the specimens was created via electromagnetic induction following a rapid discharge of high voltage through a solenoid that was specially manufactured to interact with the ring specimen. This created a magnetic field that interacted with the specimen and therefore set a pressure on it. Three experiments were performed for each of the following charge levels: 2 kV, 3 kV, 4 kV and 5 kV. These experiments created maximum external pressures in the specimens that varied between 7 MPa and 38 MPa.
The dynamic response of the ring specimens was recorded using a digital high-speed camera; analyses of the images revealed the initial uniform radial acceleration of the rings followed by the onset and evolution of dynamic buckling. The buckling response of the aluminum rings revealed that several different wave lengths (or buckling modes) can be observed simultaneously. These wave lengths correspond to measured mode numbers between 3 and 44, depending on the rate of change of the applied loading with the higher modes selected at higher strain-rates. Superposition of several pictures taken at different times during the experiment shows that as the ring deforms, the buckling waves stay within the same angular sector, keeping the same mode numbers they initially selected all the way during deformation.
Numerical simulations were performed with the finite element program ABAQUS and validated the observation that several different buckling modes appear simultaneously in the rings and that their localizations are governed by material and geometric imperfections in the specimens. / text
|
30 |
BUCKLING BEHAVIOR OF SYMMETRIC ARCHESQaqish, Samih Shaker, 1950- January 1977 (has links)
No description available.
|
Page generated in 0.0502 seconds