• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic buckling of thin metallic rings under external pressure

Mainy, Aurélien 19 July 2012 (has links)
The main aim of this thesis is to gain insight through experiments into how the deformation characteristics of a thin ring made of a metallic material such as aluminum depend on the strain-rate. More precisely, this study investigates the buckling behavior of thin metallic rings subjected to a dynamic radial compressive loading. To do so, a total of twelve experiments were performed: three experiments for each of four load levels. The specimens used were aluminum 6061-O circular rings, having a mean radius of 15.5 mm with a radius-to-thickness ratio of 31. The external pressure acting on the specimens was created via electromagnetic induction following a rapid discharge of high voltage through a solenoid that was specially manufactured to interact with the ring specimen. This created a magnetic field that interacted with the specimen and therefore set a pressure on it. Three experiments were performed for each of the following charge levels: 2 kV, 3 kV, 4 kV and 5 kV. These experiments created maximum external pressures in the specimens that varied between 7 MPa and 38 MPa. The dynamic response of the ring specimens was recorded using a digital high-speed camera; analyses of the images revealed the initial uniform radial acceleration of the rings followed by the onset and evolution of dynamic buckling. The buckling response of the aluminum rings revealed that several different wave lengths (or buckling modes) can be observed simultaneously. These wave lengths correspond to measured mode numbers between 3 and 44, depending on the rate of change of the applied loading with the higher modes selected at higher strain-rates. Superposition of several pictures taken at different times during the experiment shows that as the ring deforms, the buckling waves stay within the same angular sector, keeping the same mode numbers they initially selected all the way during deformation. Numerical simulations were performed with the finite element program ABAQUS and validated the observation that several different buckling modes appear simultaneously in the rings and that their localizations are governed by material and geometric imperfections in the specimens. / text
2

Beams and bubbles: interplay between elastic, inertial, viscous, and interfacial mechanics

Oratis, Alexandros 15 May 2021 (has links)
Beams are ubiquitous in our everyday life and can be found in a variety of length scales, from large supports of buildings to carbon nanotubes. Similarly, bubbles can also span a variety of scales, ranging from tiny bubbles in a glass filled with champagne to the giant soap bubbles formed by artists to attract crowds. Yet, the behavior of beams and bubbles can often occur so fast that the dynamics go unnoticed. This dissertation aims to understand the mechanics of beams and bubbles in four different examples. We combine table-top experiments with mathematical models to predict how each system will behave when exposed to different extreme conditions. We start by examining the retraction of a rubber band once it has been stretched and released. This process is similar to plucking a string, where the dynamics are governed by tensile and inertial forces, resulting in a trapezoidal shape during retraction. However when a rubber band is stretched and released, a region of high-curvature develops. Our experiments and mathematical model highlight that bending forces can be significant and give rise to a curved self-similar shape to the retracting rubber band. The next example involves the competition of surface tension and twisting on a flexible rod. Most studies in the field of elasto-capillarity have focused on how surface tension can bend an elastic structure, leaving the possibility of twisting unexplored. Here we utilize particles with discrete wettabilities -- or Janus particles -- at liquid interfaces that can be used to twist a flexible cylinder. The third system is focused around the spreading behavior of bubbles on submerged surfaces coated with a layer of oil. These liquid-infused surfaces have remarkable applications due to their ability to minimize contact line pinning. However, this property has mostly been exploited using liquid drops. We here study the early spreading behavior of a bubble once it has made contact with the liquid-infused surface. The final chapter is centered around the collapse of bubbles resting on the surface of an ultra viscous liquid. When a bubble on such a surface is ruptured, the bubble film collapses vertically downwards, leading scientists to believe that gravity is driving the collapse. Yet, interfacial forces are dominant in highly curved liquid surfaces and exceed gravitational forces. By turning the setup upside-down, we show that surface tension is indeed responsible for the collapse and the subsequent wrinkling instability that develops.
3

Assessment of Global Buckling and Fatigue Life for Steel Catenary RIser by Hull-Riser-Mooring Coupled Dynamic Analysis Program

Eom, Taesung 16 December 2013 (has links)
Steel Catenary Riser (SCR) is a popular solution for a floating production facility in the deep and ultra-deep ocean. In the analysis of SCR, the behavioral characteristics are investigated to check the failure modes by assessing the magnitude and the frequency of the stress and strain which SCR goes through in time series. SCR is affected by the motions of connected floating production facility and exciting environmental loads. The driven force and motion of SCR has an interaction with seabed soil which represents the stiffness and friction force where SCR touches the seabed. Dynamic response of SCR is primarily caused by the coupled motion of floating structure. The displacement of floating structure is often large and fast enough to cause short cycles of negative and positive tension on SCR. The interaction between SCR and seabed is concentrated at the touchdown zone resulting into the compression and corresponding deformation of pipeline at the position. This paper presents models of floating production facilities and connected mooring lines and SCRs in 100-year hurricane environmental loads and seabed, focusing on the motional characteristics of SCR at the touchdown zone. In time series simulation, the model of SCR is first analyzed as a pipeline with indefinite elasticity so that the SCR does not fail even if the exciting loads exceed the property limit of SCR. Then the SCR design is manually checked using criteria for each failure mode to estimate the integrity.
4

[en] ON THE MODELLING OF STRUCTURES SUBJECTED TO FOLLOWER FORCES / [pt] ASPECTOS DA MODELAGEM DE ESTRUTURAS SOB AÇÃO DE FORÇAS SEGUIDORAS

JULIA FIGUEIREDO GENOVESI 03 December 2018 (has links)
[pt] Nesta dissertação estuda-se em detalhe o modelo de coluna submetido a carregamentos não conservativos dependentes do deslocamento. Analisa-se a influência da base elástica de Winkler e de apoios elásticos nos dois problemas clássicos de Beck e Leipholz. Apresenta-se uma metodologia para o método dinâmico de determinação da condição e carga crítica através de uma formulação matricial. A modelagem é desenvolvida para um elemento de viga esbelta através do método de Rayleigh-Ritz com o campo de deslocamentos descrito pela combinação de polinômios cúbicos e funções trigonométricas. Desenvolveu-se um programa em MATLAB de acordo com a metodologia apresentada. Os problemas clássicos foram utilizados para avaliar numericamente a eficácia desta abordagem. Apresentam-se as análises de influência de base elástica e apoios elásticos avaliados tanto separadamente como em conjunto. Isto permite mostrar que as cargas críticas e respectivos modos são afetados de forma distinta para cada tipo de apoio elástico e forma de carregamento. Finalmente, as análises são comparadas com resultados presentes na bibliografia, de modelos mais completos, considerando movimento de fluido ao longo do elemento, com o objetivo de avaliar a faixa de aplicabilidade do modelo de Beck para o caso de tubulações. / [en] In this dissertation, the model of column subjected to displacementdependent non-conservative loads is studied in detail. The influence of Winkler s elastic foundation and elastic supports is carried out for some classical problems such as Beck s and Leipholz s. A methodology based on a matrix formulation is presented for determining the critical condition and load in a dynamic approach. The model developed is based on Rayleigh-Ritz method, using a combination of cubic polynomials and trigonometric functions to describe the displacement field of slender beam elements. This methodology was implemented in a computer program developed in MATLAB. The classical problems were used as numerical tests to evaluate the accuracy of this approach. Later, the analysis of elastic foundation and elastic supports influence are presented separately and together. It was possible to show that both critical load and its respective modes are affected differently for each type of elastic support and load distribution. Finally, the influence analysis of Beck s problem is compared to results presented in in bibliography of a model which includes fluid movement within the element. This comparison has the purpose to estimate a range of applicability of the classical Beck s model to a pipe conveying fluid.
5

Additively manufactured metallic cellular materials for blast and impact mitigation

Harris, Jonathan Andrew January 2018 (has links)
Selective laser melting (SLM) is an additive manufacturing process which enables the creation of intricate components from high performance alloys. This facilitates the design and fabrication of new cellular materials for blast and impact mitigation, where the performance is heavily influenced by geometric and material sensitivities. Design of such materials requires an understanding of the relationship between the additive manufacturing process and material properties at different length scales: from the microstructure, to geometric feature rendition, to overall dynamic performance. To date, there remain significant uncertainties about both the potential benefits and pitfalls of using additive manufacturing processes to design and optimise cellular materials for dynamic energy absorbing applications. This investigation focuses on the out-of-plane compression of stainless steel cellular materials fabricated using SLM, and makes two specific contributions. First, it demonstrates how the SLM process itself influences the characteristics of these cellular materials across a range of length scales, and in turn, how this influences the dynamic deformation. Secondly, it demonstrates how an additive manufacturing route can be used to add geometric complexity to the cell architecture, creating a versatile basis for geometry optimisation. Two design spaces are explored in this work: a conventional square honeycomb hybridised with lattice walls, and an auxetic stacked-origami geometry, manufactured and tested experimentally here for the first time. It is shown that the hybrid lattice-honeycomb geometry outperformed the benchmark metallic square honeycomb in terms of energy absorption efficiency in the intermediate impact velocity regime (approximately 100 m/s). In this regime, the collapse is dominated by dynamic buckling effects, but wave propagation effects have yet to become pronounced. By tailoring the fold angles of the stacked origami material, numerical simulations illustrated how it can be optimised for specific impact velocity regimes between 10-150 m/s. Practical design tools were then developed based on these results.

Page generated in 0.0875 seconds