• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FUNCTIONAL ANALYSIS OF GENES CONTROLLING PRODUCTION OF THE LATERAL BRANCHING INHIBITOR IN PEA

Tanya Brcich Unknown Date (has links)
This thesis describes a molecular-based study undertaken to analyse the expression of the RAMOSUS1 (RMS1) and RAMOSUS5 (RMS5) genes in pea (Pisum sativum). Both genes encode carotenoid cleavage dioxygenase (CCD) enzymes that are together proposed to control the synthesis of an inhibitor of bud outgrowth termed SMS (Shoot Multiplication Signal). SMS was recently identified as strigolactone. Expression analyses of RMS1 presented here have built upon earlier experiments which demonstrate it to be a highly regulated transcript. RMS1 mRNA levels are known to be rapidly decreased following removal of the shoot apex but are subsequently restored to that of intact plants by auxin (indole-3-acetic acid or IAA). This regulatory mechanism is retained in all five ramosus mutants tested to date. Together with physiological data, this indicates RMS1, and therefore SMS, are required in IAA-mediated suppression of bud outgrowth. Another significant aspect of RMS1 regulation identified in previous studies involves a graft-transmissible, long-distance feedback signal that moves from shoot to root. This feedback regulation is dependent on the RMS2 gene and enhances RMS1 expression levels. Prior to the cloning of RMS5 and its discovery as a second CCD enzyme in the RMS network, reciprocal grafting studies with the rms mutants indicated RMS5 may act in the same pathway as RMS1 to produce SMS. Multiple studies presented here demonstrate that these two CCD genes are expressed in similar tissues and are regulated by the same signals, specifically IAA and the RMS2-dependent feedback signal. Like RMS1, the RMS5 gene also retains its IAA response in the rms mutants. However, RMS5 is generally less responsive to changes in IAA and RMS2-dependent feedback, as it exhibits smaller fluctuations than RMS1 in its expression levels. Together these findings support a general view that RMS1 is more likely to control a rate-limiting step in SMS synthesis. A previous study indicated that RMS1 expression may be up-regulated by IAA through a posttranscriptional mechanism. This thesis sought to more closely examine the RMS1 and RMS5 IAA response by separately observing the effect of IAA on subsequent transcription. New transcripts, termed heterogenous nuclear RNAs (hnRNAs), were relatively quantified in parallel with existing mRNAs in the steady-state cytoplasmic pool. The experiments conducted here provide further evidence that IAA may act post-transcriptionally to stabilise RMS1 mRNA because the changes in hnRNA are not proportional to the changes in mRNA following IAA-modifying treatments. IAA may still function to induce transcription of RMS1, but this does not appear to be a significant mechanism by which IAA regulates RMS1 expression. In contrast, the IAA induction of RMS5 occurs predominantly via new transcription and RMS5 either lacks or is not as strongly subjected to the IAA-mediated mRNA stabilisation mechanism proposed for RMS1. Initial studies described in this thesis also suggest that IAA could act to regulate the expression of the Arabidopsis orthologues MORE AXILLARY BRANCHING (MAX) genes via a post-transcriptional mechanism. Analyses of MAX hnRNA and mRNA levels in Arabidopsis to date indicate it is the RMS5 orthologue MAX3 which exhibits an IAA response most like RMS1. Additional studies into the regulation of RMS1 and RMS5 presented in this thesis provide further insights into the molecular mechanisms controlling their expression levels. In vitro experiments with the translation inhibitor cycloheximide demonstrate that RMS5 expression levels are increased when protein synthesis is reduced, as previously shown for RMS1. Relative quantification of RMS1 and RMS5 hnRNA levels further demonstrate that the induction by cycloheximide is due primarily to an increase in new transcription, indicating that RMS1 and RMS5 are negatively regulated by a rapidly turned-over transcriptional repressor. Tissue specific effects on RMS1 expression were also observed which are consistent with a protein degradation function of the RMS4 F-box in the shoot. This thesis provides further evidence to suggest that SMS acts in concert with IAA to inhibit the sustained outgrowth of axillary buds. RMS1 and RMS5 expression levels are not regulated by a hypothetical fast decapitation signal which is proposed to cause the initial bud outgrowth occurring prior to decapitation-induced IAA depletion. RMS1, RMS5 and SMS are therefore unlikely to control the initial exit of buds from dormancy to an intermediate transition state. Studies here also suggest that enhanced shoot auxin transport and cytokinin biosynthesis are associated with axillary bud outgrowth because the rms mutants contain elevated shoot expression levels of a gene encoding the auxin efflux carrier PIN1 and two genes controlling cytokinin biosynthesis. Several approaches described in this study were used to characterise the RMS1 and RMS5 proteins. Anti-peptide antibodies were generated against both proteins and the results obtained show that although the antibodies are likely to recognise the full-length proteins, further work is required to effectively detect RMS1 and RMS5 in plant tissues via western blotting. Preliminary in situ immunolocalisation results indicate the RMS1 and RMS5 proteins are localised to the vasculature, consistent with gene expression analyses.
2

Branching control mechanisms in the model tree Populus: analyzing the role of strigolactones and BRANCHED1

Muhr, Merlin 07 September 2015 (has links)
Pflanzen verfügen über ein hohes Maß an phänotypischer Plastizität. Modifikationen ihres genetisch determinierten Aufbaus ermöglichen ihnen, flexibel auf ein breites Spektrum von Umwelteinflüssen zu reagieren. Dies umfasst Veränderungen der Pflanzenarchitektur, die durch den modularen Aufbau des Sprosses ermöglicht werden. In den Blattachseln des Primärsprosses werden Achselknospen angelegt. Jede einzelne dieser Knospen hat das Potenzial, zu einem Sekundärspross, d.h. einem Zweig, auszuwachsen. Der Knospenaustrieb wird jedoch reguliert und die meisten Knospen verbleiben in einem dormanten Status. Bei der Entscheidung, ob die Dormanz einer Knospe gebrochen wird und sie zu einem Zweig auswächst, spielen diverse endo- und exogene Faktoren eine Rolle, die in einem komplexen, aus Hormonen und Transkriptionsfaktoren bestehenden Regelnetz, integriert werden. Dieses umfasst Strigolactone (SL), eine neuartige Klasse von Phytohormonen, die im Allgemeinen den Knospenaustrieb hemmen. Es wird diskutiert, dass der inhibitorische Effekt der SL durch eine Modulation des Flusses des Phytohormons Auxin und/oder die Regulation anderer nachgelagerter Faktoren direkt in der Knospe herbeigeführt wird. Das bekannteste Beispiel für ein knospenspezifisches, SL-reguliertes Gen ist BRANCHED1 (BRC1), dessen mRNA-Abundanz positiv von SL beeinflusst wird. Es codiert einen Transkriptionsfaktor der den Knospenaustrieb unterdrückt, was höchstwahrscheinlich über eine Regulation des Zellzyklus erfolgt. SL und BRC1 wurden umfassend in Modellarten wie Arabidopsis (Arabidopsis thaliana), Erbse (Pisum sativum), Petunie (Petunia hybrida) und Reis (Oryza sativa) untersucht. Im Gegensatz dazu ist das Wissen über die Gene und Stoffwechselwege dieses Regelkreises in verholzten, ausdauernden Arten wie dem Modellbaum Pappel (Populus sp.), limitiert. In der vorliegenden Arbeit wurden Pappel-Orthologe von Genen, die an der SL-Biosynthese (MAX4) und der SL-Signaltransduktion (MAX2) beteiligt sind, identifiziert und auf eine vermutete Funktion in der Regulation der Baumarchitektur untersucht. Es existieren jeweils zwei Orthologe in der Pappel. Um ihre Funktion zu charakterisieren, wurden Expressionsanalysen durchgeführt und transgene Linien für amiRNA-vermittelte simultane oder einzelne knock-downs der beiden Orthologe erzeugt. Knock-downs von MAX2 waren nur teilweise erfolgreich. Es konnte kein Phänotyp beobachtet werden, was höchstwahrscheinlich auf eine redundante Funktion des nicht herunterregulierten Orthologs zurückzuführen ist. MAX4 Doppel-Knock-downs waren hingegen erfolgreich und es konnten typische SL-Mangelphänotypen in den entsprechenden amiMAX4-1+2 Linien beobachtet werden. Diese umfassten eine erhöhte Sprossverzweigung, eine Reduktion der Pflanzenhöhe, eine verkürzte Indernodienlänge sowie eine erhöhte Adventivbewurzelung. Durch ihre geringe Konzentration, hohe Instabilität und große Diversität ist die direkte Quantifizierung von SL sehr anspruchsvoll. Außerdem sind Standards und Referenzen für Pappel-SL nicht verfügbar, was direkte Messungen nicht durchführbar machte. Stattdessen wurden indirekte Hinweise auf SL-Mangel in den amiMAX4-1+2 Pflanzen gesammelt. Ein Beispiel dafür ist die erfolgreiche Komplementation der Sprossphänotypen durch Pfropfung. Baumspezifische Aspekte der Knospendormanz, besonders die Winterdormanz, wurden ebenfalls untersucht. Ein Einfluss von SL konnte aber nicht nachgewiesen werden, was darauf hinweist, dass SL den Knospenaustrieb nur in der vegetativen Periode hemmen. Als ein SL-reguliertes Zielgen und daher eine weitere wichtige Komponente der Verzweigungskontrolle wurde ein Pappel BRC1 Ortholog identifiziert. Dieses Gen wies die typischen, in anderen Arten nachgewiesenen Expressionsmuster, sowie eine signifikant reduzierte Expression in den erzeugten amiMAX4-1+2 Linien auf, welche wahrscheinlich reduzierte SL-Level haben. Zusätzlich wurde auf der Basis von Sequenz- und Expressionsanalysen ein Pappel BRC2 Ortholog identifiziert. Beide Gene kontrollieren möglicherweise die Verzweigung in Pappeln und integrieren verschiedene Umwelteinflüsse. Zusammengefasst legen die in diesem Projekt gewonnenen Daten eine Rolle von SL und BRC1 als wichtige Regulatoren des Knospenaustriebs in Pappeln nahe. Die Ergebnisse machen deutlich, dass grundlegende Prozesse in der Kontrolle der Pflanzenarchitektur über ein breites Spektrum von Arten, einschließlich Bäumen, hoch konserviert sind. Abgesehen von ihrer Relevanz als Grundlage zur Erforschung der Rolle von SL und BRC1 in Pappeln, sind die in diesem Projekt erzeugten stark verzweigten Linien möglicherweise wirtschaftlich für die Nutzung auf Kurzumtriebsplantagen interessant, auf welchen sie vermutlich über verbesserte Eigenschaften im Stockaustrieb nach der Ernte und im Kronenschluss verfügen.
3

The role of auxin transport in the control of shoot branching

van Rongen, Martin January 2018 (has links)
Branching is a highly plastic trait, enabling plants to adapt their growth form in response to environmental stimuli. In flowering plants, shoot branching is regulated through the activity of axillary buds, which grow into branches. Several classes of plant hormones have been shown to play pivotal roles in regulating bud outgrowth. Auxin derived from the primary shoot apex and active branches inhibits bud outgrowth, whereas cytokinin promotes it. Strigolactones also inhibit bud outgrowth, by changing properties of the auxin transport network, increasing the competition between buds. This occurs by modulating access to the polar auxin transport stream (PATS) in the main stem. The PATS provides directional, long distance transport of auxin down the stem, involving basal localisation of the auxin transporter PIN-FORMED1 (PIN1). Buds need to export their auxin across the stem towards the PATS in order to activate, but since PIN1 is mainly expressed in narrow files of cells associated with the stem vasculature, PIN1 itself it is unlikely to facilitate this connectivity. This thesis re-examines the role of auxin transport in the stem, showing that, besides the PIN1-mediated PATS, other auxin transport proteins constitute a more widespread and less polar auxin transport stream, allowing auxin exchange between the PATS and surrounding tissues. Disruption of this transport stream is shown to reduce bud-bud communication and to partially rescue the increased branching observed in strigolactone mutants. Furthermore, it is shown that distinct classes of auxin transport proteins within this stream can differentially affect bud outgrowth mediated by BRANCHED1 (BRC1). BRC1 is a transcription factor proposed to determine bud activation potential. Taken together, the data presented here provide a more comprehensive understanding of the shoot auxin transport network and its role in shoot branching regulation.

Page generated in 0.0253 seconds