• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis Of Discrete-Time Queues With Applications To ATM Based B-ISDNs

Gangadhar, Nandyala Dhani 03 1900 (has links) (PDF)
No description available.
2

Inference of buffer queue times in data processing systems using Gaussian Processes : An introduction to latency prediction for dynamic software optimization in high-end trading systems / Inferens av buffer-kötider i dataprocesseringssystem med hjälp av Gaussiska processer

Hall, Otto January 2017 (has links)
This study investigates whether Gaussian Process Regression can be applied to evaluate buffer queue times in large scale data processing systems. It is additionally considered whether high-frequency data stream rates can be generalized into a small subset of the sample space. With the aim of providing basis for dynamic software optimization, a promising foundation for continued research is introduced. The study is intended to contribute to Direct Market Access financial trading systems which processes immense amounts of market data daily. Due to certain limitations, we shoulder a naïve approach and model latencies as a function of only data throughput in eight small historical intervals. The training and test sets are represented from raw market data, and we resort to pruning operations to shrink the datasets by a factor of approximately 0.0005 in order to achieve computational feasibility. We further consider four different implementations of Gaussian Process Regression. The resulting algorithms perform well on pruned datasets, with an average R2 statistic of 0.8399 over six test sets of approximately equal size as the training set. Testing on non-pruned datasets indicate shortcomings from the generalization procedure, where input vectors corresponding to low-latency target values are associated with less accuracy. We conclude that depending on application, the shortcomings may be make the model intractable. However for the purposes of this study it is found that buffer queue times can indeed be modelled by regression algorithms. We discuss several methods for improvements, both in regards to pruning procedures and Gaussian Processes, and open up for promising continued research. / Denna studie undersöker huruvida Gaussian Process Regression kan appliceras för att utvärdera buffer-kötider i storskaliga dataprocesseringssystem. Dessutom utforskas ifall dataströmsfrekvenser kan generaliseras till en liten delmängd av utfallsrymden. Medmålet att erhålla en grund för dynamisk mjukvaruoptimering introduceras en lovandestartpunkt för fortsatt forskning. Studien riktas mot Direct Market Access system för handel på finansiella marknader, somprocesserar enorma mängder marknadsdata dagligen. På grund av vissa begränsningar axlas ett naivt tillvägagångssätt och väntetider modelleras som en funktion av enbartdatagenomströmning i åtta små historiska tidsinterval. Tränings- och testdataset representeras från ren marknadsdata och pruning-tekniker används för att krympa dataseten med en ungefärlig faktor om 0.0005, för att uppnå beräkningsmässig genomförbarhet. Vidare tas fyra olika implementationer av Gaussian Process Regression i beaktning. De resulterande algorithmerna presterar bra på krympta dataset, med en medel R2 statisticpå 0.8399 över sex testdataset, alla av ungefär samma storlek som träningsdatasetet. Tester på icke krympta dataset indikerar vissa brister från pruning, där input vektorermotsvararande låga latenstider är associerade med mindre exakthet. Slutsatsen dras att beroende på applikation kan dessa brister göra modellen obrukbar. För studiens syftefinnes emellertid att latenstider kan sannerligen modelleras av regressionsalgoritmer. Slutligen diskuteras metoder för förbättrning med hänsyn till både pruning och GaussianProcess Regression, och det öppnas upp för lovande vidare forskning.
3

Efficient Minimum Cycle Mean Algorithms And Their Applications

Supriyo Maji (9158723) 23 July 2020 (has links)
<p>Minimum cycle mean (MCM) is an important concept in directed graphs. From clock period optimization, timing analysis to layout optimization, minimum cycle mean algorithms have found widespread use in VLSI system design optimization. With transistor size scaling to 10nm and below, complexities and size of the systems have grown rapidly over the last decade. Scalability of the algorithms both in terms of their runtime and memory usage is therefore important. </p> <p><br></p> <p>Among the few classical MCM algorithms, the algorithm by Young, Tarjan, and Orlin (YTO), has been particularly popular. When implemented with a binary heap, the YTO algorithm has the best runtime performance although it has higher asymptotic time complexity than Karp's algorithm. However, as an efficient implementation of YTO relies on data redundancy, its memory usage is higher and could be a prohibitive factor in large size problems. On the other hand, a typical implementation of Karp's algorithm can also be memory hungry. An early termination technique from Hartmann and Orlin (HO) can be directly applied to Karp's algorithm to improve its runtime performance and memory usage. Although not as efficient as YTO in runtime, HO algorithm has much less memory usage than YTO. We propose several improvements to HO algorithm. The proposed algorithm has comparable runtime performance to YTO for circuit graphs and dense random graphs while being better than HO algorithm in memory usage. </p> <p><br></p> <p>Minimum balancing of a directed graph is an application of the minimum cycle mean algorithm. Minimum balance algorithms have been used to optimally distribute slack for mitigating process variation induced timing violation issues in clock network. In a conventional minimum balance algorithm, the principal subroutine is that of finding MCM in a graph. In particular, the minimum balance algorithm iteratively finds the minimum cycle mean and the corresponding minimum-mean cycle, and uses the mean and cycle to update the graph by changing edge weights and reducing the graph size. The iterations terminate when the updated graph is a single node. Studies have shown that the bottleneck of the iterative process is the graph update operation as previous approaches involved updating the entire graph. We propose an improvement to the minimum balance algorithm by performing fewer changes to the edge weights in each iteration, resulting in better efficiency.</p> <p><br></p> <p>We also apply the minimum cycle mean algorithm in latency insensitive system design. Timing violations can occur in high performance communication links in system-on-chips (SoCs) in the late stages of the physical design process. To address the issues, latency insensitive systems (LISs) employ pipelining in the communication channels through insertion of the relay stations. Although the functionality of a LIS is robust with respect to the communication latencies, such insertion can degrade system throughput performance. Earlier studies have shown that the proper sizing of buffer queues after relay station insertion could eliminate such performance loss. However, solving the problem of maximum performance buffer queue sizing requires use of mixed integer linear programming (MILP) of which runtime is not scalable. We formulate the problem as a parameterized graph optimization problem where for every communication channel there is a parameterized edge with buffer counts as the edge weight. We then use minimum cycle mean algorithm to determine from which edges buffers can be removed safely without creating negative cycles. This is done iteratively in the similar style as the minimum balance algorithm. Experimental results suggest that the proposed approach is scalable. Moreover, quality of the solution is observed to be as good as that of the MILP based approach.</p><p><br></p>

Page generated in 0.0608 seconds