1 |
Low-energy buildings : energy use, indoor climate and market diffusionPersson, Johannes January 2014 (has links)
Low-energy buildings have, in recent years, gained attention and moved towards a large-scale introduction in the residential sector. During this process, national and international criteria for energy use in buildings have become stricter and the European Union has through the Energy Performance of Buildings Directive imposed on member states to adapt their building regulations for ‘Nearly Zero Energy Buildings’, which by 2021 should be standard for new buildings. With a primary focus on new terraced and detached houses, this thesis analyses how the concept of low-energy buildings may be further developed to reduce the energy use in the residential sector. The main attention is on the technical performance in terms of indoor climate and heat consumption as well as on the market diffusion of low-energy buildings into the housing market. A multidisciplinary approach is applied, which here means that the concept of low-energy buildings is investigated from different perspectives as well as on different system levels. The thesis thus encompasses methods from both engineering and social sciences and approaches the studied areas through literature surveys, interviews, assessments and simulations. The thesis reveals how an increased process integration of the building’s energy system can improve the thermal comfort in low-energy buildings. Moreover, it makes use of learning algorithms – in this case artificial neural networks – to study how the heat consumption can be predicted in a low-energy building in the Swedish climate. The thesis further focuses on the low-energy building as an element in our society and it provides a market diffusion analysis to gain understanding of the contextualisation process. In addition, it suggests possible approaches to increase the market share of low-energy buildings. / <p>QC 20140321</p>
|
2 |
Performance evaluations of high-temperature cooling systems in Mediterranean climatePieskä, Henrikki January 2021 (has links)
Cooling demand in Europe is predicted to grow 25-50% between 2020-2050. Meanwhile, the EU aims to lower the greenhouse gas emissions from its building stock by 60%. Therefore, it is essential to find solutions that can meet the growing cooling demand with less energy and integrate renewable energy sources. The goal of this thesis is to technically evaluatehigh-temperature cooling systems and their contributions to the targets mentioned above. The study was conducted using advanced building energy simulations and developing analytical methods. IDA Indoor Climate and Energy 4.8was selected as the simulation tool. The study is a part of GEOFIT project, and the used building physics and measurement data were based on one of the project pilots. The selected building is a representative office building that is a part of a three-building school complex. The building is located in Sant Cugat near Barcelona, in an area which has a typical Mediterranean climate. The simulated building model was validated using onsite measurement data. Two types of high-temperature cooling systems were studied: a radiant cooling system and an all-air cooling system. For the study, the systems were designed to create equal thermal comfort conditions, so that their energy and exergy use could be compared. In the studied case, the radiant cooling system was found to use 40% less energy and consume 85% less exergy than a conventional low-temperature all-air cooling system. It was also found that a passive geothermal radiant cooling system requires 66% less electricity for pumps and fans than a passive geothermal all-air cooling system. The results demonstrate that radiant cooling systems have the potential to lower exergy consumption in cooling applications thanks to the high supply temperature and that using water as a heat transfer medium is more efficient than using air. / Kylningsefterfrågan i Europa förutses att växa 25-50% mellan 2020-2050. Samtidigt strävar EU efter att sänka utsläppen av växthusgaser från sina byggnader med 60%. Det är därför viktigt att hitta lösningar som kan tillgodose det växande kylbehovet med mindre energi och att integrera förnybara energikällor. Målet med denna avhandling är en teknisk evaluering av högtemperatur-kylsystem och deras bidrag till ovan nämnda mål. Studien genomfördes med avancerade simuleringar av byggnadsenergi och utvecklade analytiska metoder. IDA Indoor Climate and Energy 4.8 valdes som simuleringsverktyg. Studien är en del av GEOFIT-projektet och den använda byggnadsfysiken och mätdata baserades på en av projektpiloterna. Den valda byggnaden är en representativ kontorsbyggnad som ingår i ett skolbyggnad med tre byggnader. Byggnaden ligger i Sant Cugat nära Barcelona, i ett område som har ett typiskt medelhavsklimat. Den simulerade byggnadsmodellen validerades med hjälp av mätdata på plats. Två typer av högtemperatur-kylsystem studerades: ett strålande kylsystem och ett luftkylsystem. För studien designades systemen för att skapa lika termiska komfortförhållanden, så att deras energi och exergianvändning kunde jämföras. I det studerade fallet visade sig att det strålande kylsystemet använde 40% mindre energi och förbrukade 85% mindre exergi än ett konventionellt högtemperatur-kylsystem med låg temperatur. Man fann också att ett passivt geotermiskt strålkylsystem kräver 66% mindre el för pumpar och fläktar än ett passivt geotermiskt luftkylsystem. Resultaten visar att strålningskylsystem har potential att sänka exergiförbrukningen i kylapplikationer tack vare den höga framledningstemperaturen och att användning av vatten som värmeöverföringsmedium är effektivare än att använda luft. / <p>QC 210204</p>
|
Page generated in 0.1409 seconds