Spelling suggestions: "subject:"crônicos"" "subject:"cônico""
1 |
Transformações de holonomia em cordas negras e espaços cônicosManoel de Morais Carvalho, Alexandre January 2003 (has links)
Made available in DSpace on 2014-06-12T18:05:49Z (GMT). No. of bitstreams: 2
arquivo7996_1.pdf: 2457654 bytes, checksum: cb7f0a29c4b34b95ce84d04452f6771d (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / Nesta tese, empregamos o conceito de transformações de holonomia para caracterizar as propriedades geométricas dos mais diversos sistemas físicos, desde sistemas cosmológicos, como por exemplo, o buraco negro BTZ e a corda negra, a física da matéria condensada, cones de grafite e superfluidos. A holonomia pode ser interpretada geometricamente como o resultado do transporte paralelo de vetores ou espinores ao longo de caminhos fechados. Ela é justamente uma medida da mudança adquirida por essas entidades quando transportadas palelamente ao longo de caminhos fechados ou via diferentes caminhos. A holonomia determina o ângulo de déficit entre as posições final e inicial dos vetores e espinores. Ela é uma propriedade global da variedade e como tal serve como ferramente para classificação de espaços-tempo.Embora a noção de holonomia tenha sido empregada inicialmente no contexto de uma teoria de gauge, ela foi estendida para sistemas gravitacionais. Analisamos o transporte paralelo de vetores e espinores no espaço-tempo do buraco negro BTZ e em seguida estendemos nossas analises para a corda negra, que pode ser interpretada como a folheação de vários buracos negros BTZ ao longo do eixo-z. Estudamos o comportamento de várias órbitas e verificamos a existência de banda de invariância de holonomia para certos valores do raio da órbita em função das propriedades do buraco e da corda negra. Em seguida discutimos as transformações de holonomia como uma fase geométrica existente em estruturas curvas de grafite. Essas estruturas possuem simetria cônica e são formadas a partir da retirada ou inserção de material da folha de grafite. Estudamos a equivalência entre o hamiltoniano ¨tight-binding¨ e o hamiltoniano de Dirac para férmions não massivos em espaços curvos e determinamos os estados eletrônicos, bem como a fase de Berry do sistema. Estudamos ainda as propriedades geométricas de sistemas análogos. Tais sistemas têm sido extensivamente empregados como laboratório para sistemas cosmológicos e gravitacionais. Analisamos a geometria de um vórtice através de uma métrica equivalente `a métrica de uma corda cósmica com estrutura interna. E por fim, determinamos as transformações de holonomia para d-branas, isto é, estudando as propriedades topológicas de um buraco negro embebido num espaço-tempo de dimensão superior
|
2 |
Cônicas em modelos físicos / Conics in physical modelsToniolo, Luciano Santos 17 May 2018 (has links)
Este trabalho é um estudo realizado em torno das principais curvas cônicas estudadas por alunos do ensino básico: parábola, elipse e hipérbole. A ideia central do trabalho é a autosuficiência, pois apresentamos todas as ferramentas matemáticas necessárias para o entedimento desses entes e suas aplicações, desde os axiomas iniciais da geometria plana até as definições formais das cônicas e demonstrações de suas propriedades. Espera-se que uma pessoa não especializada em matemática, ao ler o trabalho, entenda toda a matemática no entorno das aplicações dessas cônicas. / This work is a study carried out around the main conic curves studied by elementary school students: parabola, ellipse and hyperbola. The main idea of this work is to be self-contained, starting from the basic axioms from the geometry and after we present formal definitions, properties and applications of conics in the everyday life. It is expected that a person that is not a specialist in mathematics, are able to read and understand all the mathematics in the surroundings of the applications of these conics.
|
3 |
Cônicas em modelos físicos / Conics in physical modelsLuciano Santos Toniolo 17 May 2018 (has links)
Este trabalho é um estudo realizado em torno das principais curvas cônicas estudadas por alunos do ensino básico: parábola, elipse e hipérbole. A ideia central do trabalho é a autosuficiência, pois apresentamos todas as ferramentas matemáticas necessárias para o entedimento desses entes e suas aplicações, desde os axiomas iniciais da geometria plana até as definições formais das cônicas e demonstrações de suas propriedades. Espera-se que uma pessoa não especializada em matemática, ao ler o trabalho, entenda toda a matemática no entorno das aplicações dessas cônicas. / This work is a study carried out around the main conic curves studied by elementary school students: parabola, ellipse and hyperbola. The main idea of this work is to be self-contained, starting from the basic axioms from the geometry and after we present formal definitions, properties and applications of conics in the everyday life. It is expected that a person that is not a specialist in mathematics, are able to read and understand all the mathematics in the surroundings of the applications of these conics.
|
Page generated in 0.0272 seconds