21 |
Designer peptides to understand the mineralization of calcium saltsAjikumar, Parayil Kumaran, Lakshminarayanan, Rajamani, Valiyaveettil, Suresh, Kini, R. Manjunatha 01 1900 (has links)
Recently, we reported the extraction, purification and amino acid sequence of ansocalcin, the major goose eggshell matrix protein. In vitro studies showed that ansocalcin induces spherical calcite crystal aggregates. We designed two peptides using the unique features of the sequence of ansocalcin and the role of these peptides in CaCO₃ crystallization was investigated. The peptides showed similar activities as compared to ansocalcin, but at a higher concentration. The full characterization of the peptides and a rational for the observed morphology for the calcite crystals are discussed in detail. / Singapore-MIT Alliance (SMA)
|
22 |
Toughening mechanism of polypropylene/calcium carbonate nanocomposites /Lin, Yong. January 2009 (has links)
Includes bibliographical references (p. 193-206).
|
23 |
Microbial carbonate precipitation in soilsAl Qabany, Ahmed Abdul Aziz January 2011 (has links)
No description available.
|
24 |
A study of the hydrolysis of calcium and magnesium carbonatesBrowning, B. L. January 1928 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1928. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaf 97).
|
25 |
The Hydrolysis of Calcium Carbonate and its Relation to the Alkalinity of Calcareous SoilsBuehrer, T. F., Williams, J. A. 15 October 1936 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
|
26 |
Factors affecting the strength characteristics of calcium-carbonate - cemented soils.Al-Ghanem, Abdulhakim M. F. January 1989 (has links)
The factors which affect the engineering properties of calcium carbonate cemented soil are examined. The influence of calcium carbonate content, molding moisture content, and confining pressure on the strength characteristics of two types of soil is investigated in two distinct phases of the research. Type A soil, obtained from the University of Arizona Campbell Avenue Farm in Tucson, was used for the artificially cemented specimen stage. It is composed of sand and silt-size particles with some clay and is virtually free of calcium carbonate in its natural state. Sierrita soil, obtained from the Twin Buttes Open Pit Mine south of Tucson, was used for the reconstituted sample stage. It is naturally cemented with calcium carbonate and is composed mainly of sand, gravel, a small amount of silt, and occasional large-sized (boulder and cobble) particles. Specimens for triaxial compression testing were compacted for each phase of the study under carefully controlled conditions. Three test series were carried out on Type A soil artificially cemented with calcium carbonate. Three percentages (0%, 15%, and 30%) on a dry weight basis of the soil were used. Two molding water contents, one dry and one wet of optimum moisture content, were established for each test series. Unconsolidated undrained triaxial compression tests were carried out on oven-dried specimens at three different confining pressures to obtain shear strength parameters. The fabric characteristics of selected specimens were then defined by viewing them under a scanning electron microscope. The results indicate that the strength of the calcium carbonate cemented soil depends on the distribution and not necessarily the content of the cementing agent within the soil mass. Visual examination of the various microstructures of the artificially cemented soil confirmed the hypothesis that strength gain occurs when the calcium carbonate particles are concentrated at the points of contact between soil grains. Visual examination of the fabric of the naturally cemented Sierrita soil showed the microstructure to be highly compressed with weathered calcium carbonate particles dominating the soil structure. The calcium carbonate content was found to range from 14 to 23%. Because of sampling difficulties, an in situ cohesion value for the Sierrita soil could not be obtained from conventional laboratory tests. Therefore, the value was obtained by back analysis of the stability of actual slopes existing at Twin Buttes Mine. Slope stability analyses using Bishop's Modified Method with a search routine based on the Simplex Method of Nelder and Mead were performed. Stability analyses were also performed using strength properties of artificially cemented Type A soil. These analyses showed the relationships among cohesion, friction angle, safety factor, and calcium carbonate content for a specified slope geometry.
|
27 |
Eggshell Matrix Protein Mimetics: Elucidation of Molecular Mechanism of Goose Eggshell Calcification using Designed PeptidesAjikumar, Parayil Kumaran, Lakshminarayanan, Rajamani, Valiyaveettil, Suresh, Kini, R. Manjunatha 01 1900 (has links)
Model peptides were designed, synthesized and conducted a detailed structure-property study to unravel the molecular mechanism of goose eggshell calcification. The peptides were designed based on the primary structural features of the eggshell matrix proteins ansocalcin and OC-17. In vitro CaCO₃ crystal growth experiments in presence of these peptides showed calcite crystal aggregation as observed in the case of the parent protein ansocalcin. The structure of these peptides in solution was established using intrinsic tryptophan fluorescence studies and quasi-elastic light scattering experiments. The structural features are correlated with observed results of the in vitro crystallization studies. / Singapore-MIT Alliance (SMA)
|
28 |
A study of calcium carbonate crystal growth in the presence of a calcium complexing agentTrainer, Denise R. (Denise Ruth) 01 June 1981 (has links)
No description available.
|
29 |
Auto Template Assembly of CaCO3-Chitosan Hybrid Nanoboxes and Nanoframes in Ionic Liquid MediumChen, Hsingming Anna 2011 May 1900 (has links)
Recently, there has been increased effort in researching methods for producing hollow nanostructures because of their potential impact in the fields of catalysis, separation processes, drug delivery, and energy storage and conversion devices. The purpose of this thesis is to describe a method for forming hollow inorganic-organic hybrid nanoboxes and nanoframes. This approach relies upon ionic liquid (1-butyl-3-methyl-imidazolium chloride) mediated auto-templating assembly of CaCO3 and chitosan to form nanoframes (two open faces) and nanoboxes (one open face).
The average dimension of the nanostructures formed was 339 ± 95 x 299 ± 89 nm. Detailed structure of nanoboxes and nanoframes were obtained by 3-D electron tomography and X-ray diffraction. Chemical bonding was determined by FTIR, and the ratio of organics to inorganics in the nanostructures was determined by thermal gravimetric analysis. The chitosan to CaCO3 weigh ratio, mixing strength, temperature, and dialysis time were varied to further elucidate the method of formation. It was found that increasing the mixing power caused the equilibrium nanostructure dimension to decrease. On the other hand, varying the experimental temperature in the range of 80 to 160˚C did not affect the nanostructure dimension. The dialysis study showed that during dialysis the nanostructure core was increasingly removed. Nanoframes were observed after 72 hours of dialysis. With further dialysis, there was continued erosion of nanoframes. Results indicate that the concentration gradient and the solubility difference between the mixture components were responsible for this transformation.
|
30 |
The spectroscopic analysis of vaterite and other forms of calcium carbonate /Hollett, Mark Joseph, January 2000 (has links)
Thesis (M.Sc.), Memorial University of Newfoundland, 2000. / Bibliography: leaves 155-160.
|
Page generated in 0.0841 seconds