• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 36
  • 26
  • 15
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 29
  • 26
  • 20
  • 20
  • 19
  • 19
  • 17
  • 16
  • 16
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit

Wang, Yuan, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
52

Synthesis of Precipitated Calcium Carbonate Nanoparticles Using Modified Emulsion Membranes

Gupta, Ritika 08 April 2004 (has links)
The synthesis of precipitated calcium carbonate nanoparticles with the use of double water in oil emulsion has been developed. Restricting the mass of calcium ions present in the system makes it possible to predict particle size precipitated. A model was developed to calculate the concentration required to synthesize a desired particle size. This model took into account a coalescence factor. The coalescence factor is described at the probability of two emulsion droplets, with separate nucleation processes within them, colliding and forming one nucleation process. The Ca2+ ions diffused through the oil membrane into the emulsion droplets with (CaCO3)2- ions by concentration gradients and facilitated transport. The size and shape of precipitated calcium carbonate synthesized was confirmed using scanning electron microscope and light scattering. Particles ranging from 100 nm to 1200 nm have been synthesized using mass restriction. The effect of temperature on the crystalline structure of precipitated calcium carbonate was studied. This was done by x-ray diffraction, where it was found that calcite was the dominating crystalline structure.
53

Synthesis of Amphiphilic α- and γ-AApeptides for Antimicrobial, Self-Assembly, and Mineralization Studies

Amin, Mohamad N. 01 January 2013 (has links)
Seven novel, amphiphilic AApeptides were prepared. Two cationic, lipo-α-AApeptides, NA-75 and NA-77 were found to possess potent antimicrobial activity against Gram-positive bacteria, with almost no hemolytic activity. In addition to NA-75 and 77, four amphiphilic, γ-AApeptides, NA-133, 135, 137, and 139, and one anionic lipo-α-AApeptide, NA-81, were prepared for molecular self-assembly studies, with several interesting nanostructures observed by TEM. Mineralization of calcium carbonate from gaseous CO2 and Ca2+ in the presence of the 7 AApeptide amphiphiles was also observed by optical microscopy. Several AApeptides were found to be able to influence CaCO3 crystal morphology. Another α-AApeptide, NA-63, was synthesized by a novel, alternative method, which has several potential advantages over the previous synthesis methods.
54

Effect of stearate/stearic acid coating on filled high density polyethylene properties

Petiraksakul, Pinsupha January 2000 (has links)
High density polyethylene (HDPE) is a widely used plastic but it is also a combustible material. One way of reducing flammability is to add fillers, such as magnesium hydroxide (Mg(OH)2). However, this has a deleterious effect on the mechanical properties of composites. It has been found that one possible method of restoring mechanical properties is to modifY the filler particles with coating agents, such as stearic acid. In the present work, this idea was taken a stage further with the use of various metal stearates (e.g. magnesium stearate, calcium stearate, and zinc stearate) for modifying filler. The fillers examined were magnesium hydroxide and calcium carbonate. A filler loading of 40% w/w was used in all samples. Samples were moulded into a variety of shapes for mechanical testing. Such tests included, tensile, flexural, and impact testing. To obtain deeper understanding of the effect of the coating agents on the fillers, a variety of fundamental tests were carried out. These included Diffuse Reflectance FTIR (DRIFT), Thermal Analysis using a DSC cell, Xray Diffraction (XRD), contact angle measurement. Unfilled HDPE, uncoated filled-HDPE, and coated filled-HDPE were compared using uncoated filled-HDPE as a base line. Uncoated filled-HDPE is more brittle than unfilled HPDE. Surface modification of filler improves the toughness properties. Comparing coated filled-compounds, stearic acid and zinc stearate caused a small improvement, magnesium stearate improved the properties significantly with calcium carbonate while calcium stearate gave the best results for coating magnesium hydroxide. One monolayer coating gave the best compound properties compared to other degrees of coating. Although, tensile/flexural strength was not greatly affected elongation at yield, extension at maximum load, and impact properties increased significantly. DSC was used to observe the disappearance and conversion of coating agents as coating proceeded. X-ray diffraction showed the effect of injection moulding on the orientation of the filler and polymer. During coating of the filler particles, XRD and DSC were used to follow incorporation of stearate particles to produce the monolayer coverage. Surface free energy results showed that surface modification of filler resulted in the reduction of hydrophilicity of filler leading to tougher composites compared with uncoated filled-compounds.
55

Non-equilibrium fractionation of the stable isotopes of carbon and oxygen during precipitation of calcium carbonate by marine phytoplankton

Goodney, David E January 1977 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1977. / Bibliography: leaves 138-146. / Microfiche. / x, 146 leaves ill
56

Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit

Wang, Yuan, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
57

Microbial CaCO₃ precipitation for the production of biocement /

Whiffin, Victoria S. January 2004 (has links)
Thesis (Ph.D)--Murdoch University, 2004. / Thesis submitted to the Division of Science and Engineering. Includes bibliographical references (leaves 136-144).
58

Dissolution experimentale et naturelle de foraminiferes planctoniques approches morphologique, isotopic et cristallographic /

Bonneau, Marie-Claude. January 1978 (has links)
Thesis (doctoral)--Université Pierre et Marie Curie, 1978. / Cover title. Includes bibliographical references (leaves 223-231).
59

Κβαντοχημική μελέτη του ανθρακικού ασβεστίου

Μηναδάκης, Εμμανουήλ 23 July 2010 (has links)
- / -
60

Calcium metabolism, calcium carbonate accretion and light-enhanced calcification in the red coralline alga, Calliarthron tuberculosum

Lavelle, James Michael, 1950- 12 1900 (has links)
x, 156 leaves : ill. ; 29 cm Notes Typescript. (Another copy on microfilm is located in Archives) Thesis (Ph.D.) -- University of Oregon Includes vita and abstract Bibliography: leaves 150-156

Page generated in 0.0448 seconds