• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intrazelluläre Ca2+-Transporter im Kolonepithel der Ratte Untersuchungen von Ryanodinrezeptoren sowie SERCAs /

Prinz, Gundula. January 2007 (has links) (PDF)
Zugl.: Giessen, Universiẗat, Diss., 2007.
2

Die Bedeutung von Phospholamban Pentameren für die Phospholamban-Phosphorylierung und die Regulation der SERCA2a-Aktivität / The role of phospholamban pentamers for phospholamban phosphorylation and regulation of SERCA2a activity

Wittmann, Tanja January 2014 (has links) (PDF)
Phospholamban (PLN) reguliert in der Herzmuskelzelle die Aktivität der Kalzium-ATPase SERCA2a und damit maßgeblich die Kinetik des myozytären Kalzium-Kreislaufs. PLN liegt im Herz in Form von Monomeren und Pentameren vor, wobei angenommen wird, dass nur die Monomere die Aktivität der SERCA2a durch direkte Interaktion hemmen. Die Funktion der Pentamere ist noch immer unklar. In der vorliegenden Arbeit sollte untersucht werden, ob PLN-Pentamere für die PKA-abhängige Phosphorylierung des PLN und damit für die Regulation der PLN-Aktivität von Bedeutung sein können. Mit Hilfe transfizierter HEK293AD-Zellen und verschiedener PLN-Mutanten wurde gezeigt, dass sowohl PLN-Monomere als auch -Pentamere durch die PKA phosphoryliert werden, wobei die Phosphorylierung der Monomere in Anwesenheit von Pentameren geringer ist und verzögert abläuft. Ohne Pentamer war die Phosphorylierung der Monomere dagegen bereits basal und nach moderater PKA-Stimulation stärker. Ursache dafür schien eine höhere Affinität der PKA für PLN-Pentamere als für Monomere zu sein. Darüber hinaus konnte gezeigt werden, dass nicht nur PLN-Monomere sondern auch das PLN-Pentamer mit der SERCA2a interagieren und das Oligomer im Gegensatz zum PLN-Monomer nach PLN-Phosphorylierung zu einem kleinen Anteil an die SERCA2a gebunden bleibt. Auch spiegelten sich die unterschiedlichen Phosphorylierungsmuster von PLN-Pentamer und Monomer in den SERCA2a-Aktivitäten wieder. Messungen der SERCA2a-Aktivität in Mäuseherzen mit (Wildtyp und TgPLN) und ohne (TgAFA-PLN) PLN-Pentamere zeigten, dass Wildtyp-PLN und TgPLN die SERCA2a stärker inhibieren als TgAFA-PLN, was auf die stärkere basale Phosphorylierung des TgAFA-PLN zurückzuführen war. Nach PKA-Stimulation war der Anstieg der Enzymaktivität in Anwesenheit von TgPLN fast dreimal höher als in TgAFA-PLN. Analog zeigte TgPLN eine deutlichere Steigerung der Phosphorylierung der PLN-Monomere als TgAFA-PLN. Zusammenfassend konnte gezeigt werden, dass PLN-Pentamere durch Hemmung der Monomer-Phosphorylierung deren Aktivität erhöhen mit der Folge einer verstärkten Inhibition der SERCA2a. Da die inhibitorische Wirkung durch PKA-Stimulation vollständig aufgehoben werden kann, erhöhen die Pentamere die Regulationsmöglichkeiten der SERCA2a-Aktivität. / Phospholamban (PLN) regulates the activity of the calcium ATPase SERCA2a and thus the kinetics of myocyte calcium cycling. In the heart, PLN occurs in monomeric and pentameric form, however, only monomers are thought to inhibit the activity of SERCA2a by direct interaction. The function of the pentamer is still unclear. The aim of the present work was to investigate whether PLN pentamers may play a role for PKA dependent PLN phosphorylation and thus for regulating PLN activity. Using transfected HEK293AD cells and various PLN mutants, it was shown that both PLN monomers and pentamers get phosphorylated by PKA. Intriguingly, phosphorylation of monomers was delayed in the presence of pentamers but increased in the absence of pentamers, both under basal conditions and moderate PKA stimulation. The underlying reason for this observation turned out to be a higher affinity of PKA for PLN pentamers compared to monomers. Furthermore, not only PLN monomers but also PLN pentamers interacted with SERCA2a. Unlike monomers, a small proportion of PLN oligomers was still bound to SERCA2a following PLN phosphorylation. Further, SERCA2a activity reflected the different phosphorylation patterns of monomers and pentamers. Measurements of SERCA2a activity in mouse hearts with (Wildtyp-PLN; TgPLN) and without PLN pentamers (TgAFA-PLN) showed that wild-type PLN and TgPLN strongly inhibit SERCA2a due to stronger phosphorylation of TgAFA-PLN. After PKA stimulation, the increase of SERCA2a enzyme activity was almost three times higher in TgPLN than in TgAFA-PLN. Likewise, the increase of monomer phosphorylation was more pronounced in TgPLN than in TgAFA-PLN. Taken together, it was shown that PLN pentamers increase the activity of PLN monomers by attenuating monomer phosphorylation leading to increased inhibition of SERCA2a. Since this inhibition can be completely abolished by PKA stimulation, we conclude that PLN pentamers augment the regulatory range of SERCA2a.
3

The role of the Canonical transient receptor potential 6 (TRPC6) channel and the C terminal LIM domain protein of 36 kDa (CLP36) for platelet function / Die Rolle des Canonical transient receptor potential 6 (TRPC6) Kanals und des 36 kDa C-terminalen LIM Domänenproteins (CLP36) in der Thrombozytenfunktion

Gupta, Shuchi January 2012 (has links) (PDF)
Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury, but also contribute to arterial thrombosis, leading to myocardial infarction and stroke. Thrombus formation is the result of well-defined molecular events, including agonist-induced elevation of intracellular calcium ([Ca2+]i) and series of cytoskeletal rearrangements. With the help of genetically modified mice, the work presented in this thesis identified novel mechanisms underlying the process of platelet activation in hemostasis and thrombosis. Store-operated calcium entry (SOCE) through Orai1 was previously shown to be the main Ca2+ influx pathway in murine platelets. The residual Ca2+ entry in the Orai1 deficient platelets suggested a role for additional non-store-operated Ca2+ (non-SOC) and receptor operated Ca2+ entry (ROCE) in maintaining platelet calcium homeostasis. Canonical transient receptor potential channel 6 (TRPC6), which is expressed in both human and murine platelets, has been attributed to be involved in SOCE as well as in diacylglycerol (DAG)-triggered ROCE. In the first part of the study, the function of TRPC6 in platelet Ca2+ signaling and activation was analyzed by using the TRPC6 knockout mice. In vitro agonist induced Ca2+ responses and in vivo platelet function were unaltered in Trpc6-/- mice. However, Trpc6-/- mice displayed a completely abolished DAG mediated Ca2+-influx but a normal SOCE. These findings identified TRPC6 as the major DAG operated ROC channel in murine platelets, but DAG mediated ROCE has no major functional relevance for hemostasis and thrombosis. In the second part of the thesis, the involvement of the PDLIM family member CLP36 in the signaling pathway of the major platelet collagen receptor glycoprotein (GP) VI was investigated. The GPVI/FcR-chain complex initiates platelet activation through a series of tyrosine phosphorylation events downstream of the FcR-chain-associated immunoreceptor tyrosine-based activation motif (ITAM). GPVI signaling has to be tightly regulated to prevent uncontrolled intravascular platelet activation, but the underlying mechanisms are not fully understood. The present study reports the adaptor protein CLP36 as a major inhibitor of GPVI-ITAM signaling in platelets. Platelets from mice expressing a truncated form of CLP36, (Clp36ΔLIM) and platelets from mice lacking the entire protein (Clp36-/-) displayed profound hyper-activation in response to GPVI-specific agonists, whereas GPCR signaling pathways remained unaffected. These alterations translated into accelerated thrombus formation and enhanced pro-coagulant activity of Clp36ΔLIM platelets and a pro-thrombotic phenotype in vivo. These studies revealed an unexpected inhibitory function of CLP36 in GPVI-ITAM signaling and established it as a key regulator of arterial thrombosis. / Die Aktivierung und die Aggregation von Thrombozyten (Blutplättchen) sind essentielle Prozesse, um Blutverluste nach Verletzungen zu begrenzen, sie spielen jedoch auch eine Rolle bei der arteriellen Thrombose, die zu Herzinfarkt und Schlaganfall führen kann. Die Thrombusbildung ist das Ergebnis wohldefinierter molekularer Vorgänge, die die Agonisten-induzierte Konzentrationserhöhung von intrazellulärem Kalzium ([Ca2+]i) und eine Reihe von Umlagerungen des Zytoskeletts mit einschließen. Die Ergebnisse dieser Arbeit, die mit Hilfe genetisch veränderter Mauslinien erzielt wurden, decken neue Mechanismen der Thrombozytenaktivierung in Thrombose und Hämostase auf. Es wurde bereits gezeigt, dass der durch Orai1 vermittelte Store-operated calcium entry (SOCE) den Haupteintrittsweg für Ca2+ in Mausthrombozyten darstellt. Der verbleibende Ca2+ Einstrom führte zur Annahme, dass zusätzlich non-store-operated Ca2+ (non-SOC) und receptor operated Ca2+ entry (ROCE) eine Rolle in der Aufrechterhaltung der Ca2+ Homöostase spielen. Dem Canonical transient receptor potential channel 6 (TRPC6), der in Thrombozyten des Menschen als auch der Maus exprimiert wird, wurde eine Rolle in dem SOCE und diacylglycerol (DAG)-vermitteltem ROCE zugeschrieben. Im ersten Teil dieser Arbeit wurde die Funktion von TRPC6 im Ca2+ Signaling und der Aktivierung von Thrombozyten mit Hilfe der TRPC6 defizienten Mauslinie untersucht. Die Funktion der Trpc6-/- Thrombozyten waren in vitro (z.B. Agonisten-induzierte Ca2+-Antworten) als auch in vivo unverändert. Jedoch zeigten Thrombozyten von Trpc6-/- Mäusen einen komplett fehlenden DAG vermittelten Kalziumeinstrom, aber normalen SOCE. Diese Ergebnisse identifizierten TRPC6 als den Haupt-DAG-aktivierten ROC Kanal in Mausthrombozyten. Jedoch hatte diese DAG vermittelte ROCE keine größere funktionelle Relevanz für Thrombose und Hämostase. Im zweiten Teil dieser Arbeit wurde die Rolle von CLP36, einem Mitglied der PDLIM Proteinfamilie, im Signalweg des Haupt-Kollagenrezeptors, Glykoprotein (GP) VI, auf Thrombozyten untersucht. Der GPVI/FcRKette Komplex initiiert die Thrombozytenaktivierung durch eine Reihe von Tyrosinphosphorylierungen, die dem FcR-Kette-assoziiertem immunoreceptor tyrosine based activation motif (ITAM) nachgeschaltet sind. GPVI-vermittelte Signale müssen sorgfältig reguliert sein, um eine unkontrollierte intravaskuläre Thrombozytenaktivierung zu verhindern. Jedoch sind die zugrunde liegenden Mechanismen nicht komplett verstanden. Die vorliegende Arbeit zeigt, dass das Adapterprotein CLP36 als ein wichtiger Inhibitor des GPVI-ITAM Signalwegs wirkt. Thrombozyten von Mäusen, welche eine trunkierte Form von CLP36 exprimieren, der die LIM-Domäne fehlt (Clp36ΔLIM), als auch von Mäusen, denen das komplette Protein fehlt (Clp36-/-), zeigten eine deutlich verstärkte Aktivierung als Antwort auf GPVI-spezifische Agonisten. Andere Signalwege aber waren nicht beeinflusst. Diese Veränderungen resultierten in einer schnelleren Thrombusbildung und erhöhten prokoagulatorischen Aktivität von Clp36ΔLIM Thrombozyten, welche sich letztendlich als prothrombotischer Phänotyp in vivo bemerkbar machten. Diese Ergebnisse deckten eine unerwartete inhibitorische Funktion von CLP36 im GPVI-ITAM Signalweg auf und etablierten CLP36 als einen wichtigen Regulator der arteriellen Thrombose.
4

Verlauf der postnatalen Entwicklung des Vitamin D-abhängigen Ca2+-Transportes im Dünndarm von Ferkeln

Brandenburger, Magnus. Unknown Date (has links) (PDF)
Tierärztl. Hochsch., Diss., 2004--Hannover.
5

Spatiotemporal calcium-dynamics in presynaptic terminals

Erler, Frido. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Dresden.
6

Immunhistochemische und funktionelle Charakterisierung der IP3-Rezeptorsubtypen im Kolonepithel der Ratte

Siefjediers, Anne. January 2006 (has links)
Universiẗat, Diss., 2006--Giessen.
7

Frequenzabhängigkeit der IP3-induzierten Calciumregulation in murinen ventrikulären Kardiomyozyten / Frequency dependence of IP3-induced calcium regulation in murine ventricular cardiomyocytes

Werner, Jana Sophia January 2023 (has links) (PDF)
In Kardiomyozyten ist Calcium (Ca2+) ein wichtiges Signalmolekül und eine präzise Regulation der Ca2+ Konzentration in den Zellkompartimenten erforderlich. Ca2+ wird Angiotensin II-induziert und vom Botenstoff IP3 vermittelt aus IP3 Rezeptoren des Sarkoplasmatischen Retikulum (SR) freigesetzt, was zur mitochondrialen Ca2+ Aufnahme führt. Diese Kommunikationswege zwischen SR und Mitochondrium sind u.a. bei der Herzinsuffizienz durch pathologische Umbauprozesse gestört. Zudem zirkulieren bei Herzinsuffizienz vermehrt Hormone wie AngII, welches u.a. die intrazelluläre IP3 Konzentration steigert und als Hypertrophie Signal wirkt. Dieser Arbeit geht die Vermutung voraus, dass eine gestörte mitochondriale Ca2+ Aufnahme durch Veränderung des nukleären Ca2+ Transienten die hypertrophe Genexpression beeinflussen kann. Es wurde an ventrikulären Kardiomyozyten von adulten Mäusen mit kardiospezifischem MCU Knock out oder MCU Wildtyp untersucht, wie sich Ca2+ Transienten in Zytosol und Nukleus bei AngII-Stimulation und Störung der mitochondrialen Ca2+ Aufnahme durch Blockade des mRyR1 oder des MCU verändern. Zum Vergleich wurde der Effekt des β adrenerg vermittelten, IP3 unabhängigen Ca2+ Anstiegs beobachtet. Zur Untersuchung der Frequenzabhängigkeit der Effekte wurde die elektrische Stimulation wurde variiert. Die Arbeit zeigt, dass sich die Blockade der mitochondrialen Ca2+ Aufnahme unterschiedlich auf den nukleären Ca2+ Transienten auswirkt: Bei AngII-Stimulation kam es in Folge der Blockade des mRyR1, nicht aber des MCU, zur Steigerung des nukleären Ca2+ Transienten. Dieser Effekt war bei 1 Hz Stimulationsfrequenz, nicht aber nach einer Steigerung auf 4 Hz zu beobachten. Bei β adrenerger Stimulation hingegen veränderte die Blockade des MCU oder des mRyR1 die Ca2+ Transienten im Kern nicht signifikant. Die Arbeit verdeutlicht die Bedeutung der IP3 vermittelten Ca2+ Freisetzung für die Kontrolle der Ca2+ Konzentrationen in unterschiedlichen zellulären Kompartimenten. / Calcium (Ca2+) serves as a critical signaling molecule within cardiomyocytes, necessitating precise regulation of Ca2+ concentrations across cellular compartments. Angiotensin II (AngII) triggers Ca2+ release through inositol trisphosphate (IP3) receptors located on the sarcoplasmic reticulum (SR), a process mediated by the secondary messenger IP3, resulting in mitochondrial Ca2+ uptake. Perturbations in these communication pathways have been implicated in heart failure due to pathological remodeling processes. Additionally, in heart failure elevated levels of hormones like AngII have been observed, which increases intracellular IP3 concentration, thereby acting as a signal for hypertrophy. This work is based on the assumption that impaired mitochondrial Ca2+ uptake can influence hypertrophic gene expression by altering the nuclear Ca2+ transient. The investigation was conducted using ventricular cardiomyocytes obtained from adult mice with cardiac-specific MCU (mitochondrial calcium uniporter) knockout and MCU wildtype, analyzing alterations in cytosolic and nuclear Ca2+ transients upon AngII stimulation and impairment of mitochondrial Ca2+ uptake by blocking mRyR1 (ryanodine receptor) or MCU. Additionally, the impact of β-adrenergic mediated IP3-independent Ca2+ elevation was assessed, with varying electrical stimulation frequencies to explore frequency-dependent effects. The findings reveal distinct effects of mitochondrial Ca2+ uptake blockade on nuclear Ca2+ transients. While mRyR1 blockade, but not MCU blockade, augmented nuclear Ca2+ transients during AngII stimulation, this effect was evident at 1 Hz stimulation frequency and not after increase to 4 Hz. Conversely, β-adrenergic stimulation yielded no significant changes in nuclear Ca2+ transients upon MCU or mRyR1 blockade. This work underscores the significance of IP3-mediated Ca2+ release in controlling Ca2+ concentrations across diverse cellular compartments.

Page generated in 0.0518 seconds