• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 590
  • 218
  • 79
  • 51
  • 31
  • 16
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • Tagged with
  • 1236
  • 246
  • 195
  • 181
  • 176
  • 137
  • 132
  • 115
  • 104
  • 103
  • 101
  • 92
  • 87
  • 87
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Viscoelastic behavior of articular cartilage in unconfined compression

Smyth, Patrick A. 03 April 2013 (has links)
Previous decades of cartilage research have predominantly focused on decoupling the solid and fluid interactions of the mechanical response. The resulting biphasic and triphasic models are widely used in the biomechanics community. However, a simple viscoelastic model is able to account for the stress-relaxation behavior of cartilage, without the added complexity of solid and fluid interactions. Using a viscoelastic model, cartilage is considered a single material with elastic and dissipative properties. A mechanical characterization is made with fewer material parameters than are required by the conventional biphasic and triphasic models. This approach has tremendous utility when comparing cartilage of different species and varying healths. Additionally, the viscoelastic models can be easily extended in dynamic analysis and FEA programs. Cartilage primarily experiences compressive motion during exercise. Therefore, to mimic biological function, a mechanical test should also compress the cartilage. One such test is a viscoelastic stress-relaxation experiment. The Prony and fractional calculus viscoelastic models have shown promise in modeling stress-relaxation of equine articular cartilage. The elastic-viscoelastic correspondence principle is used to extend linear viscoelasticity to the frequency domain. This provides a comparison of articular cartilage based on stored and dissipated moduli. The storage and loss moduli metrics are hypothesized to serve as benchmarks for evaluating osteoarthritic cartilage, and provide guidelines for newly engineered bio-materials. The main goal of the current study is to test the applicability of modeling articular cartilage with viscoelastic models. A secondary goal is to establish a rigorous set of harvesting techniques that allows access to fresh explants with minimal environmental exposure. With a complex substance like cartilage, it is crucial to avoid unnecessary emph{in vitro} environmental exposure. Additional areas of study include: determining the strain-dependency of the mechanical response, exploring the response of cartilage in different fluid mediums such as saline, synovial fluid, and synthetic substitutes, and studying the time-dependent properties of cartilage during stress-relaxation experiments. Equine stifle joints, which are mechanically analogous to human knees, are harvested and used for analysis in this study. It is believed that the proposed viscoelastic models can model other articulating joints as well. If viscoelastic theory can be used to characterize cartilage, then comparisons can be drawn between real and artificial cartilage, leading to better joint replacement technology.
592

Exterior differential systems on Hilbert manifolds and its application to calculus of variation

Liao, Ching-Jou 16 June 2011 (has links)
Calculus of variation on finite dimensional manifolds via exterior differential systems were expounded in the books of Sternberg, Bryant and Griffiths. Here we plan to extend the theory of exterior differential systems and study the applications to calculus of variation on Hilbert manifolds.
593

A £k-calculus Based Approach for Web Services Composition in Choreography Environment

Kuo, Wei-ting 30 July 2012 (has links)
Nowadays, Web Services technology has become a standard to integrate business processes across organizations. In general, there are two approaches for web service composition: Orchestration and Choreography. Orchestration is used to develop a single process that integrates services within or across an organization to achieve a business goal. On the other hand, Choreography is often used for cross-organizational communication and serves as a specification for communication. In a choreographed environment, each Web service is an independent entity, and each service selects the partner services using its own selection policy without knowing all the other services in the choreography. In this thesis, we use £k-calculus for modeling the Web Services. Afterwards, we propose an approach for each constituent process to choose and invoke other processes using the limited information provided by its partners. In our method, each service proclaims the requirments of its potential service providers (or consumers) and itself and provides to its partners. Subsequently each service will generate a local view using the information provided by its service consumers and providers to guide the selection. We evaluate our method by simulating 100,000 executions with different degrees of service availability. The experimental results indicate that our proposed method can indeed improve the success rate of the entire choreography.
594

Realizing The Specification And Execution Of Workflows Through The Event Calculus

Yilmaz, Huseyin 01 December 2006 (has links) (PDF)
Workflow management promises a solution to an age-old problem: controlling,monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. In the light of this support, many researchers developed different approaches to model new systems with different capabilities to solve this age-old problem. One of the approaches is using logicbased methodology for the specification and execution of workflows. Here, the event calculus, a logic programming formalism for representing events and their effects especially in database applications, is used for this approach. It is shown that the control flow graph of a workflow specification can be expressed as a set of logical formulas and the event calculus can be used to specify the role of a workflow manager through a set of rules for the execution dependencies of activities. Constructed workflow formalization through Event Calculus is realized by using recent technologies, and the resulting product is named as EventFlow,including some administrative interfaces to manage system and workflow engine. The thesis describes the architecture and implementation details of EventFlow, an editor developed for graphical representation of control flow graph, and technologies used in the implementation. And an example application is built to show the usability and execution of the implemented system.
595

Students Understanding Of Limit Concept: An Apos Perspective

Cetin, Ibrahim 01 December 2008 (has links) (PDF)
The main purposes of this study is to investigate first year calculus students&rsquo / understanding of formal limit concept and change in their understanding after limit instruction designed by the researcher based on APOS theory. The case study method was utilized to explore the research questions. The participants of the study were 25 students attending first year calculus course in Middle East Technical University in Turkey. Students attended five weeks instruction depending on APOS theory in the fall semester of 2007-2008. Limit questionnaire including open-ended questions was administered to students as a pretest and posttest to probe change in students&rsquo / understanding of limit concept. At the end of the instruction a semi-structured interview protocol developed by the researcher was administered to all of the students to explore students&rsquo / understanding of limit concept in depth. The interview results were analyzed by using APOS framework. The results of the study showed that constructed genetic decomposition was found to be compatible with student data. Moreover, limit instruction was found to play a positive role in facilitating students&rsquo / understanding of limit concept.
596

Formulation And Implementation Of A Fractional Order Viscoelastic Material Model Into Finite Element Software And Material Model Parameter Identification Using In-vivo Indenter Experiments For Soft Biological Tissues

Demirci, Nagehan 01 February 2012 (has links) (PDF)
Soft biological tissue material models in the literature are frequently limited to integer order constitutive relations where the order of differentiation of stress and/or strain is integer-valued. However, it has been demonstrated that fractional calculus theory applied in soft tissue material model formulation yields more accurate and reliable soft tissue material models. In this study, firstly a fractional order (where the order of differentation of stress in the constitutive relation is non-integer-valued) linear viscoelastic material model for soft tissues is fitted to force-displacement-time indentation test data and compared with two different integer order linear viscoelastic material models by using MATLAB&reg / optimization toolbox. After the superiority of the fractional order material model compared to integer order material models has been shown, the linear fractional order material model is extended to its nonlinear counterpart in finite deformation regime. The material model developed is assumed to be isotropic and homogeneous. v A user-subroutine is developed for the material model formulated to implement it into the commercial finite element software Msc.Marc 2010. The user-subroutine developed is verified by performing a small strain finite element analysis and comparing the results obtained with linear viscoelastic counterpart of the model on MATLAB&reg / . Finally, the unknown coefficients of the fractional order material model are identified by employing the inverse finite element method. A material parameter set with an amount of accuracy is determined and the material model with the parameters identified is capable of simulating the three different indentation test protocols, i.e., &ldquo / relaxation&rdquo / , &ldquo / creep&rdquo / and &ldquo / cyclic loading&rdquo / protocols with a good accuracy.
597

General schedulability bound analysis and its applications in real-time systems

Wu, Jianjia 17 September 2007 (has links)
Real-time system refers to the computing, communication, and information system with deadline requirements. To meet these deadline requirements, most systems use a mechanism known as the schedulability test which determines whether each of the admitted tasks can meet its deadline. A new task will not be admitted unless it passes the schedulability test. Schedulability tests can be either direct or indirect. The utilization based schedulability test is the most common schedulability test approach, in which a task can be admitted only if the total system utilization is lower than a pre-derived bound. While the utilization bound based schedulability test is simple and effective, it is often difficult to derive the bound. For its analytical complexity, utilization bound results are usually obtained on a case-by-case basis. In this dissertation, we develop a general framework that allows effective derivation of schedulability bounds for different workload patterns and schedulers. We introduce an analytical model that is capable of describing a wide range of tasks' and schedulers'€™ behaviors. We propose a new definition of utilization, called workload rate. While similar to utilization, workload rate enables flexible representation of different scheduling and workload scenarios and leads to uniform proof of schedulability bounds. We introduce two types of workload constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of the task workloads. We derive parameterized schedulability bounds for arbitrary static priority schedulers, weighted round robin schedulers, and timed token ring schedulers. Existing utilization bounds for these schedulers are obtained from the closed-form formula by direct assignment of proper parameters. Some of these results are applied to a cluster computing environment. The results developed in this dissertation will help future schedulability bound analysis by supplying a unified modeling framework and will ease the implementation practical real-time systems by providing a set of ready to use bound results.
598

Scaling limit for the diffusion exit problem

Almada Monter, Sergio Angel 01 April 2011 (has links)
A stochastic differential equation with vanishing martingale term is studied. Specifically, given a domain D, the asymptotic scaling properties of both the exit time from the domain and the exit distribution are considered under the additional (non-standard) hypothesis that the initial condition also has a scaling limit. Methods from dynamical systems are applied to get more complete estimates than the ones obtained by the probabilistic large deviation theory. Two situations are completely analyzed. When there is a unique critical saddle point of the deterministic system (the system without random effects), and when the unperturbed system escapes the domain D in finite time. Applications to these results are in order. In particular, the study of 2-dimensional heteroclinic networks is closed with these results and shows the existence of possible asymmetries. Also, 1-dimensional diffusions conditioned to rare events are further studied using these results as building blocks. The approach tries to mimic the well known linear situation. The original equation is smoothly transformed into a very specific non-linear equation that is treated as a singular perturbation of the original equation. The transformation provides a classification to all 2-dimensional systems with initial conditions close to a saddle point of the flow generated by the drift vector field. The proof then proceeds by estimates that propagate the small noise nature of the system through the non-linearity. Some proofs are based on geometrical arguments and stochastic pathwise expansions in noise intensity series.
599

Sur l'intégration des équations différentielles de la mécanique Sur la théorie du dernier multiplicateur et le problème des trois corps /

Lafon, Antoine Adrien January 1900 (has links)
Thèse : Mécanique : Faculté des sciences de Paris : 1854. Thèse : Astronomie : Faculté des sciences de Paris : 1854. / Titre provenant de l'écran-titre. Notes bibliogr.
600

An investigation of the standardized multiple-choice departmental Calculus I final examination

Bearden, Maria Elizabeth. January 2003 (has links)
Thesis (Ph. D.)--Mississippi State University. Department of Curriculum and Instruction. / Title from title screen. Includes bibliographical references.

Page generated in 0.0465 seconds