• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of photogrammetric self-calibration adjustment method

Long, Barrington 18 April 2009 (has links)
The development of a viable self-calibration approach for use with non-metric cameras was investigated. Both computer generated and actual test camera data were generated to determine the effectiveness of the math model and computer program. A twenty-seven parameter bundle adjustment routine was proposed because of its versatility and compatible use in an existing aerotriangulation package. For the camera and test configuration considered, the focal length was recovered to within two percent, and the principal point location was recovered to wi thin O. 3 to twelve percent. When the computer generated data was used, the focal length and principal point offset were recovered to within 0.2 percent. Modeling and software has been made available for a future comparative study between the self-calibration and Direct Linear Transformation adjustment parameters. The self-calibration modeling and former Direct Linear Transformation modeling software is a promising tool for mensuration tests and experiments with video and Charge Coupled Device (CCD) imagery. / Master of Science
2

An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation.

Lin, TsungPo January 2008 (has links)
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dimitri Mavris; Committee Member: Erwing Calleros; Committee Member: Hongmei Chen; Committee Member: Mark Waters; Committee Member: Vitali Volovoi.
3

Using hydrological models and digital soil mapping for the assessment and management of catchments: A case study of the Nyangores and Ruiru catchments in Kenya (East Africa)

Kamamia, Ann Wahu 18 July 2023 (has links)
Human activities on land have a direct and cumulative impact on water and other natural resources within a catchment. This land-use change can have hydrological consequences on the local and regional scales. Sound catchment assessment is not only critical to understanding processes and functions but also important in identifying priority management areas. The overarching goal of this doctoral thesis was to design a methodological framework for catchment assessment (dependent upon data availability) and propose practical catchment management strategies for sustainable water resources management. The Nyangores and Ruiru reservoir catchments located in Kenya, East Africa were used as case studies. A properly calibrated Soil and Water Assessment Tool (SWAT) hydrologic model coupled with a generic land-use optimization tool (Constrained Multi-Objective Optimization of Land-use Allocation-CoMOLA) was applied to identify and quantify functional trade-offs between environmental sustainability and food production in the ‘data-available’ Nyangores catchment. This was determined using a four-dimension objective function defined as (i) minimizing sediment load, (ii) maximizing stream low flow and (iii and iv) maximizing the crop yields of maize and soybeans, respectively. Additionally, three different optimization scenarios, represented as i.) agroforestry (Scenario 1), ii.) agroforestry + conservation agriculture (Scenario 2) and iii.) conservation agriculture (Scenario 3), were compared. For the data-scarce Ruiru reservoir catchment, alternative methods using digital soil mapping of soil erosion proxies (aggregate stability using Mean Weight Diameter) and spatial-temporal soil loss analysis using empirical models (the Revised Universal Soil Loss Equation-RUSLE) were used. The lack of adequate data necessitated a data-collection phase which implemented the conditional Latin Hypercube Sampling. This sampling technique reduced the need for intensive soil sampling while still capturing spatial variability. The results revealed that for the Nyangores catchment, adoption of both agroforestry and conservation agriculture (Scenario 2) led to the smallest trade-off amongst the different objectives i.e. a 3.6% change in forests combined with 35% change in conservation agriculture resulted in the largest reduction in sediment loads (78%), increased low flow (+14%) and only slightly decreased crop yields (3.8% for both maize and soybeans). Therefore, the advanced use of hydrologic models with optimization tools allows for the simultaneous assessment of different outputs/objectives and is ideal for areas with adequate data to properly calibrate the model. For the Ruiru reservoir catchment, digital soil mapping (DSM) of aggregate stability revealed that susceptibility to erosion exists for cropland (food crops), tea and roadsides, which are mainly located in the eastern part of the catchment, as well as deforested areas on the western side. This validated that with limited soil samples and the use of computing power, machine learning and freely available covariates, DSM can effectively be applied in data-scarce areas. Moreover, uncertainty in the predictions can be incorporated using prediction intervals. The spatial-temporal analysis exhibited that bare land (which has the lowest areal proportion) was the largest contributor to erosion. Two peak soil loss periods corresponding to the two rainy periods of March–May and October–December were identified. Thus, yearly soil erosion risk maps misrepresent the true dimensions of soil loss with averages disguising areas of low and high potential. Also, a small portion of the catchment can be responsible for a large proportion of the total erosion. For both catchments, agroforestry (combining both the use of trees and conservation farming) is the most feasible catchment management strategy (CMS) for solving the major water quantity and quality problems. Finally, the key to thriving catchments aiming at both sustainability and resilience requires urgent collaborative action by all stakeholders. The necessary stakeholders in both Nyangores and Ruiru reservoir catchments must be involved in catchment assessment in order to identify the catchment problems, mitigation strategies/roles and responsibilities while keeping in mind that some risks need to be shared and negotiated, but so will the benefits.:TABLE OF CONTENTS DECLARATION OF CONFORMITY........................................................................ i DECLARATION OF INDEPENDENT WORK AND CONSENT ............................. ii LIST OF PAPERS ................................................................................................. iii ACKNOWLEDGEMENTS ..................................................................................... iv THESIS AT A GLANCE ......................................................................................... v SUMMARY ............................................................................................................ vi List of Figures......................................................................................................... x List of Tables........................................................................................................... x ABBREVIATION..................................................................................................... xi PART A: SYNTHESIS 1. INTRODUCTION ............................................................................................... 1 1.1 Catchment management ...................................................................................1 1.2 Tools to support catchment assessment and management ..............................4 1.3 Catchment management strategies (CMSs)......................................................9 1.4 Concept and research objectives.......................................................................11 2. MATERIAL AND METHODS................................................................................15 2.1. STUDY AREA ..................................................................................................15 2.1.1. Nyangores catchment ...................................................................................15 2.1.2. Ruiru reservoir catchment .............................................................................17 2.2. Using SWAT conceptual model and land-use optimization ..............................19 2.3. Using soil erosion proxies and empirical models ..............................................21 3. RESULTS AND DISCUSSION..............................................................................24 3.1. Assessing multi-metric calibration performance using the SWAT model...........25 3.2. Land-use optimization using SWAT-CoMOLA for the Nyangores catchment. ..26 3.3. Digital soil mapping of soil aggregate stability ..................................................28 3.4. Spatio-temporal analysis using the revised universal soil loss equation (RUSLE) 29 4. CRITICAL ASSESSMENT OF THE METHODS USED ......................................31 4.1. Assessing suitability of data for modelling and overcoming data challenges...31 4.2. Selecting catchment management strategies based on catchment assessment . 35 5. CONCLUSION AND RECOMMENDATIONS ....................................................36 6. REFERENCES ............................ .....................................................................38 PART B: PAPERS PAPER I .................................................................................................................47 PAPER II ................................................................................................................59 PAPER III ...............................................................................................................74 PAPER IV ...............................................................................................................88
4

Transient engine model for calibration using two-stage regression approach

Khan, Muhammad Alam Z. January 2011 (has links)
Engine mapping is the process of empirically modelling engine behaviour as a function of adjustable engine parameters, predicting the output of the engine. The aim is to calibrate the electronic engine controller to meet decreasing emission requirements and increasing fuel economy demands. Modern engines have an increasing number of control parameters that are having a dramatic impact on time and e ort required to obtain optimal engine calibrations. These are further complicated due to transient engine operating mode. A new model-based transient calibration method has been built on the application of hierarchical statistical modelling methods, and analysis of repeated experiments for the application of engine mapping. The methodology is based on two-stage regression approach, which organise the engine data for the mapping process in sweeps. The introduction of time-dependent covariates in the hierarchy of the modelling led to the development of a new approach for the problem of transient engine calibration. This new approach for transient engine modelling is analysed using a small designed data set for a throttle body inferred air ow phenomenon. The data collection for the model was performed on a transient engine test bed as a part of this work, with sophisticated software and hardware installed on it. Models and their associated experimental design protocols have been identi ed that permits the models capable of accurately predicting the desired response features over the whole region of operability. Further, during the course of the work, the utility of multi-layer perceptron (MLP) neural network based model for the multi-covariate case has been demonstrated. The MLP neural network performs slightly better than the radial basis function (RBF) model. The basis of this comparison is made on assessing relevant model selection criteria, as well as internal and external validation ts. Finally, the general ability of the model was demonstrated through the implementation of this methodology for use in the calibration process, for populating the electronic engine control module lookup tables.
5

Calibration, Optimality and Financial Mathematics

Lu, Bing January 2013 (has links)
This thesis consists of a summary and five papers, dealing with financial applications of optimal stopping, optimal control and volatility. In Paper I, we present a method to recover a time-independent piecewise constant volatility from a finite set of perpetual American put option prices. In Paper II, we study the optimal liquidation problem under the assumption that the asset price follows a geometric Brownian motion with unknown drift, which takes one of two given values. The optimal strategy is to liquidate the first time the asset price falls below a monotonically increasing, continuous time-dependent boundary. In Paper III, we investigate the optimal liquidation problem under the assumption that the asset price follows a jump-diffusion with unknown intensity, which takes one of two given values. The best liquidation strategy is to sell the asset the first time the jump process falls below or goes above a monotone time-dependent boundary. Paper IV treats the optimal dividend problem in a model allowing for positive jumps of the underlying firm value. The optimal dividend strategy is of barrier type, i.e. to pay out all surplus above a certain level as dividends, and then pay nothing as long as the firm value is below this level. Finally, in Paper V it is shown that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process.

Page generated in 0.1348 seconds