Spelling suggestions: "subject:"calotte glaciaire"" "subject:"calota glaciaire""
1 |
Exploitation du profil de températures mesuré dans la calotte glacière au dôme C, Antarctide orientale.Ritz, Catherine, January 1900 (has links)
Th. 3e cycle--Géophys.--Grenoble 1, 1980. N°: 132.
|
2 |
Climate change over the next millennia using LOVECLIM, a new Earth system model including the polar ice sheetsDriesschaert, Emmanuelle 24 October 2005 (has links)
A new Earth system model of intermediate complexity, LOVECLIM, has been developed in order to study long-term future climate changes. In particular, LOVECLIM includes an interactive Greenland and Antarctic ice sheet model (AGISM) as well as an oceanic carbon cycle model (LOCH). Those climatic components can have a great impact on future climate. However, most studies investigating future climate changes do not take them into account. The few studies in recent literature assessing the impact of polar ice sheets on future climate draw very different conclusions, which shows the need for developing such a model. The aim of this study is to analyse the possible perturbations of climate induced by human activities over the next millennia. A particular attention is given to the evolution of the oceanic thermohaline circulation. A series of numerical simulations have been performed with LOVECLIM over the next millennia using various forcing scenarios. The global equilibrium warming computed by the model ranges from 0.55°C to 3.75°C with respect to preindustrial times. The model does not simulate a complete shut down of the oceanic thermohaline circulation but a transient weakening followed by a quasi-recovering at equilibrium. In most of the projections, the Greenland ice sheet undergoes a continuous reduction in volume, leading to an almost total disappearance in the most pessimistic scenarios. The impact of the Greenland deglaciation on climate has been assessed through sensitivity experiments. The removal of the Greenland ice sheet is responsible for a regional amplification of the global warming inducing a total melt of Arctic sea ice in summer. The freshwater flux from Greenland generates large salinity anomalies in the North Atlantic Ocean that reduce the rate of North Atlantic Deep Water formation, slowing down the oceanic thermohaline circulation.
|
3 |
Climate change over the next millennia using LOVECLIM, a new Earth system model including the polar ice sheetsDriesschaert, Emmanuelle 24 October 2005 (has links)
A new Earth system model of intermediate complexity, LOVECLIM, has been developed in order to study long-term future climate changes. In particular, LOVECLIM includes an interactive Greenland and Antarctic ice sheet model (AGISM) as well as an oceanic carbon cycle model (LOCH). Those climatic components can have a great impact on future climate. However, most studies investigating future climate changes do not take them into account. The few studies in recent literature assessing the impact of polar ice sheets on future climate draw very different conclusions, which shows the need for developing such a model. The aim of this study is to analyse the possible perturbations of climate induced by human activities over the next millennia. A particular attention is given to the evolution of the oceanic thermohaline circulation. A series of numerical simulations have been performed with LOVECLIM over the next millennia using various forcing scenarios. The global equilibrium warming computed by the model ranges from 0.55°C to 3.75°C with respect to preindustrial times. The model does not simulate a complete shut down of the oceanic thermohaline circulation but a transient weakening followed by a quasi-recovering at equilibrium. In most of the projections, the Greenland ice sheet undergoes a continuous reduction in volume, leading to an almost total disappearance in the most pessimistic scenarios. The impact of the Greenland deglaciation on climate has been assessed through sensitivity experiments. The removal of the Greenland ice sheet is responsible for a regional amplification of the global warming inducing a total melt of Arctic sea ice in summer. The freshwater flux from Greenland generates large salinity anomalies in the North Atlantic Ocean that reduce the rate of North Atlantic Deep Water formation, slowing down the oceanic thermohaline circulation.
|
4 |
Reconstruction des transferts sédimentaires en provenance du système glaciaire de mer d'Irlande et du paléo-fleuve Manche au cours des derniers cycles climatiquesToucanne, Samuel Cremer, Michel. January 2008 (has links) (PDF)
Thèse de doctorat : Sciences et environnements. Sédimentologie marine et paléoclimats : Bordeaux 1 : 2008. / Titre provenant de l'écran-titre.
|
5 |
Groundwater flow modelling under past ice-sheets : insight into paleo-recharge in the northern Baltic Artesian BasinSterckx, Arnaud 24 April 2018 (has links)
Des données de terrain et des études de modélisation ont montré que la recharge d'eau de fonte sous les calottes glaciaires peut avoir un impact important et durable sur l'écoulement des eaux souterraines. En Estonie, au nord du Bassin Artésien Balte (BAB), ce mécanisme de recharge est invoqué pour expliquer la présence d’importants volumes d'eaux souterraines marquées par un signal isotopique et géochimique glaciaire caractéristique, étant donné que la région a connu plusieurs glaciations durant le Pléistocène et a été entièrement recouverte par la calotte Fennoscandienne au cours du Dernier Maximum Glaciaire (DMG), il y a 20000 ans environ. Cette étude vise à tester cette hypothèse à l’aide de simulations numériques. En premier lieu, une étude conceptuelle a été effectuée pour déterminer quels processus sous-glaciaires doivent être représentés dans un modèle numérique qui reproduise adéquatement les écoulements souterrains et le transport de solutés. Les processus suivants ont été étudiés: la recharge sous-glaciaire d'eau de fonte, la déformation poroélastique du milieu poreux sous le poids de la glace, l’isostasie, l’évolution du drainage en surface, le permafrost et les écoulements densitaires impliquant des eaux douces de fonte et des saumures profondes. Ces processus ont été simulés dans un modèle représentant un bassin sédimentaire conceptuel, au cours d'un épisode glaciaire suivi d'une période postglaciaire. Le transport de trois traceurs d’eau glaciaire a été simulé: δ18O, solides dissouts et âge de l’eau. Les résultats montrent que la simulation de la recharge sous-glaciaire avec une condition-limite de type 1 (Dirichlet) n'est pertinente que pour des flux de faible amplitude, ce qui pourrait être le cas sous des calottes glaciaires dont la base n’est que partiellement en fusion. La compression de la matrice rocheuse diminue les surpressions, qui apparaissent uniquement dans les couches à faible diffusivité hydraulique et épaisses. Si la recharge sous-glaciaire est faible, la compression de la matrice rocheuse peut entraîner des sous-pressions après le retrait de la calotte glaciaire. L’isostasie réduit considérablement l'infiltration d'eau de fonte et les écoulements d'eau souterraine. Sous la couche de pergélisol, l'écoulement des eaux souterraines est réduit en-dessous de la calotte glaciaire mais augmente en région périglaciaire. Tenir compte des variations de densité en lien avec la salinité diminue l'infiltration d'eau de fonte en profondeur. Cette étude montre que chaque processus sous-glaciaire est potentiellement important et devrait être pris en compte dans des modèles d’écoulement des eaux souterraines et de transport de solutés en milieu sous-glaciaire. Cependant, il est raisonnable de ne représenter que la recharge sous-glaciaire si les informations manquent pour décrire correctement les autres processus. Par conséquent, ce seul processus a été simulé pour reproduire les écoulements d'eau souterraine sous la calotte Fennoscandienne dans le BAB. Les simulations ont été réalisées dans deux modèles 2D verticaux, afin de vérifier si la recharge sous-glaciaire d’eau de fonte peut expliquer la distribution particulière de δ18O (un traceur d’eau de fonte) dans les eaux souterraines de la région. L’un recoupe l’Estonie, l’autre la Lettonie et les îles estoniennes dans le Golfe de Riga. L'écoulement des eaux souterraines est simulé durant 28000 ans, depuis le DGM jusqu’à aujourd’hui, de même que le transport de δ18O pour tracer l'eau de fonte et confronter les résultats des simulations avec les données de terrain. L'espace d’incertitude de certains paramètres a été exploré, comme l’intensité et la durée de la recharge sous-glaciaire, ainsi que la composition isotopique initiale de l'eau de fonte. Les simulations fournissent un ajustement satisfaisant entre les valeurs observées et calculées de δ18O, confirmant l’hypothèse que le BAB a subi une phase de recharge sous-glaciaire durant le DMG. Elles montrent que la recharge sous-glaciaire a créé une inversion de l'écoulement des eaux souterraines dans le bassin. L’eau de fonte a infiltré tous les aquifères, en particulier les aquifères non confinés. Après le retrait de la calotte Fennoscandienne, l'eau de fonte a été entièrement remplacée par de l'eau météorique moderne, excepté dans les aquifères confinés où de l’eau de fonte a été préservée à proximité des zones de décharge. Par ailleurs, d’importants volumes d'eau de fonte sont probablement préservés sous la mer Baltique. Les simulations indiquent enfin que des épisodes de recharge sous-glaciaire antérieurs au DGM doivent être considérés afin d'expliquer les valeurs de δ18O dans la partie plus profonde du bassin. / Field evidence and modelling studies have shown that subglacial recharge of meltwater under wet-based ice-sheets can have a significant and long-lasting impact on groundwater flow. In the northern Baltic Artesian Basin (BAB), in Estonia, this mechanism of recharge is thought to be responsible of the presence of large volumes of groundwater with a characteristic glacial isotopic and geochemical signal, because the region experienced several glaciations during the Pleistocene and was entirely covered by the Fennoscandian ice-sheet during the Last Glacial Maximum (LGM), some 20 ky BP. The present study aims at testing this hypothesis by means of numerical simulations. First, a conceptual numerical study was performed to determine which glacial and subglacial processes need to be represented in numerical models for adequately capturing subglacial groundwater flow dynamics and solute transport. The relevance of the following processes was studied: subglacial recharge of meltwater, poroelastic deformation of the porous medium under ice-sheet loading, isostasy, evolution of surface drainage, permafrost, and density-dependent flow involving fresh glacial meltwater and deep brines. Simulations of these processes were conducted in a generic sedimentary basin during a single glacial event followed by a postglacial period. The transport of three common tracers of subglacial recharge was simulated: δ18O, TDS, and groundwater age. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for low fluxes, which could be the case under partially wet-based ice-sheets. Glacial loading decreases overpressures, which appear only in thick and low hydraulic diffusivity layers. If subglacial recharge is low, glacial loading can lead to underpressures after the retreat of the ice-sheet. Isostasy considerably reduces the infiltration of meltwater and the groundwater flow rates. Below permafrost, groundwater flow is reduced under the ice-sheet but is enhanced beyond the ice-sheet front. Accounting for salinity-dependent density reduces the infiltration of meltwater at depth. This study shows that each glacial process is potentially relevant in models of subglacial groundwater flow and solute transport. However, representing only subglacial recharge can be a reasonable assumption if information is missing to describe the other processes properly. Therefore, this single process is simulated to reproduce groundwater flow beneath the Fennoscandian ice-sheet in the northern BAB. Simulations are performed in two cross-sectional models, in order to check whether subglacial recharge of meltwater can explain the unusual distribution of δ18O in groundwater in the region, which serves as a tracer of glacial meltwater. One model crosses Estonia, the other crosses Latvia and Estonian islands in the Gulf of Riga. Groundwater flow is simulated over 28 ky, from the Last Glacial Maximum (LGM) to present-day, along with δ18O transport for tracing meltwater and to compare the results of the simulations with field data. Parameter space exploration of subglacial recharge conditions is used to tackle the uncertainty in the intensity and duration of subglacial recharge in the northern BAB, as well as in the isotopic composition of meltwater. Simulations provide a satisfying fit between the observed and the computed values of δ18O, supporting the idea that subglacial recharge happened in the northern BAB during the LGM. Simulations show that subglacial recharge created a flow reversal in the basin. Meltwater infiltrated into all aquifers, especially the shallow ones. After the retreat of the Fennoscandian ice-sheet, meltwater was entirely replaced by modern meteoric water, excepted in confined aquifers where some meltwater has been preserved close to the discharge areas. Large volumes of meltwater are also probably preserved beneath the Baltic Sea. Simulations also indicate that episodes of subglacial recharge prior to the LGM must be considered in order to explain the values of δ18O in the deeper basin.
|
6 |
Reconstruction des transferts sédimentaires en provenance du système glaciaire de mer d'Irlande et du paléo-fleuve Manche au cours des derniers cycles climatiquesToucanne, Samuel 08 December 2008 (has links)
Les périodes glaciaires du Pléistocène sont contemporaines de la croissance d’imposantes calottes de glace en Europe, et de la présence du Fleuve Manche qui s’écoulait entre la Grande-Bretagne et la France. Ce fleuve représentait un des plus grands systèmes fluviatiles ayant jamais existé en Europe de l'Ouest. A travers la reconstruction des transferts sédimentaires sur la Marge Nord Gascogne, nous discutons dans ce travail de l’amplitude des oscillations glaciaires et de la puissance du Fleuve Manche au cours des derniers 1,2 millions d’années. Les transferts sédimentaires augmentent significativement lors du développement majeur des calottes glaciaires il y a 900 000 ans et tout particulièrement lors du stade isotopique marin (MIS) 12, il y a 450 000 ans. Durant cette période, la fusion des calottes Britannique et Scandinave en Mer du Nord oblige les eaux d’Europe centrale à s’écouler dans le Golfe de Gascogne au travers du détroit du Pas-de-Calais, dont nous datons l’ouverture il y a 455 000 ans. Cette modification profonde du réseau de drainage européen rend possible une telle configuration lors des périodes glaciaires suivantes, et particulièrement lors des MIS 6 (~150 ka) et MIS 2 (~18 ka). Au cours de ces périodes, les apports sédimentaires sur la Marge Nord Gascogne augmentent brutalement en réponse à la fonte des calottes, la compétence du Fleuve Manche devenant suffisamment importante pour charrier le sédiment issu de l’érosion glaciaire vers le Golfe de Gascogne. Le débit solide minimum du Fleuve Manche est ainsi estimé à 130 Mt an-1 lors de la dernière déglaciation. Plus généralement, nous démontrons, pour la période étudiée, que les transferts sédimentaires sur la Marge Nord Gascogne et le fonctionnement des systèmes turbiditiques Celtique et Armoricain sont très majoritairement contrôlés par le climat. Par ailleurs, la reconnaissance des événements de fonte des calottes européennes tout au long des derniers 1,2 millions d’années a permis, pour la première fois, la corrélation directe de la stratigraphie continentale européenne avec la stratigraphie isotopique marine. / The Pleistocene has been period of fluctuating climate accompanied by prominent sea-level lowstands during the glacial intervals, when massive continental ice sheets extended from mountainous to lowland European areas. The retreat of the shoreline on the extensive present-day shallow continental shelf of the southern part of the British Isles induced the appearance of the ‘Fleuve Manche’ palaeoriver, one of the largest systems that drained the European continent. Sedimentary records from the Bay of Biscay offer an independent record allowing the reconstruction of the freshwater and sediment discharges of the ‘Fleuve Manche’, and the possibility of detecting the imprint of surrounding ice-sheet oscillations and attendant modification of hinterland drainage directions throughout the Pleistocene. For the last 1.2 Ma, the progressive development of extensive Pleistocene ice-sheets over Europe during cold periods favoured sedimentary transfers in the Bay of Biscay, particularly since MIS 12 when the British and Fennoscandian ice sheets merged in the North Sea for the first time, forcing the North Sea fluvial system to flow southwards through the Dover Strait, which opened 455 000 years ago according to our data. From this point onwards, the North Sea drainage, as well as meltwaters that flowed westwards along the southern margin of the Fennoscandian ice-sheet could drain into the Bay of Biscay, as reported through significant terrigenous supplies in the northern Bay of Biscay during the MIS 6 (ca.150 ka) and MIS 2 (ca.18 ka). We assume for example that sediment load delivered to the Bay of Biscay by the ‘Fleuve Manche’ reached 130 M t yr-1 at time of the last melting of the European ice sheet ca. 18 000 years ago. On the whole, we demonstrate, for the studied period, that climate forcing strongly affects the sediment transfer into the northern Bay of Biscay and the turbiditic activity of the Celtic and Armorican turbidite systems. Finally, the recognition of melting events of the European ice sheets throughout the last 1.2 Ma allows, for the first time, the correlation of the European continental glaciation-derived chronology with the marine isotope stratigraphy.
|
7 |
Reconstruction des transferts sédimentaires en provenance du système glaciaire de Mer d'Irlande et du paléofleuve Manche au cours des derniers cycles climatiquesToucanne, Samuel 08 December 2008 (has links) (PDF)
Les périodes glaciaires du Pléistocène sont contemporaines de la croissance d'imposantes calottes de glace en Europe, et de la présence du Fleuve Manche qui s'écoulait entre la Grande-Bretagne et la France. Ce fleuve représentait un des plus grands systèmes fluviatiles ayant jamais existé en Europe de l'Ouest. A travers la reconstruction des transferts sédimentaires sur la Marge Nord Gascogne, nous discutons dans ce travail de l'amplitude des oscillations glaciaires et de la puissance du Fleuve Manche au cours des derniers 1,2 millions d'années. Les transferts sédimentaires augmentent significativement lors du développement majeur des calottes glaciaires il y a 900 000 ans et tout particulièrement lors du stade isotopique marin (MIS) 12, il y a 450 000 ans. Durant cette période, la fusion des calottes Britannique et Scandinave en Mer du Nord oblige les eaux d'Europe centrale à s'écouler dans le Golfe de Gascogne au travers du détroit du Pas-de-Calais, dont nous datons l'ouverture il y a 455 000 ans. Cette modification profonde du réseau de drainage européen rend possible une telle configuration lors des périodes glaciaires suivantes, et particulièrement lors des MIS 6 (~150 ka) et MIS 2 (~18 ka). Au cours de ces périodes, les apports sédimentaires sur la Marge Nord Gascogne augmentent brutalement en réponse à la fonte des calottes, la compétence du Fleuve Manche devenant suffisamment importante pour charrier le sédiment issu de l'érosion glaciaire vers le Golfe de Gascogne. Le débit solide minimum du Fleuve Manche est ainsi estimé à 130 M t an-1 lors de la dernière déglaciation. Plus généralement, nous démontrons, pour la période étudiée, que les transferts sédimentaires sur la Marge Nord Gascogne et le fonctionnement des systèmes turbiditiques Celtique et Armoricain sont très majoritairement contrôlés par le climat. Par ailleurs, la reconnaissance des évènements de fonte des calottes européennes tout au long des derniers 1,2 millions d'années a permis, pour la première fois, la corrélation directe de la stratigraphie continentale européenne avec la stratigraphie isotopique marine.
|
Page generated in 0.0696 seconds