• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biorthogonal wavelet bases for the boundary element method

Harbrecht, Helmut, Schneider, Reinhold 31 August 2006 (has links) (PDF)
As shown by Dahmen, Harbrecht and Schneider, the fully discrete wavelet Galerkin scheme for boundary integral equations scales linearly with the number of unknowns without compromising the accuracy of the underlying Galerkin scheme. The supposition is a wavelet basis with a sufficiently large number of vanishing moments. In this paper we present several constructions of appropriate wavelet bases on manifolds based on the biorthogonal spline wavelets of A. Cohen, I. Daubechies and J.-C. Feauveau. By numerical experiments we demonstrate that it is worthwhile to spent effort on their construction to increase the performance of the wavelet Galerkin scheme considerably.
2

An Isomorphism Theorem for Graphs

Culp, Laura 01 December 2009 (has links)
In the 1970’s, L. Lovász proved that two graphs G and H are isomorphic if and only if for every graph X , the number of homomorphisms from X → G equals the number of homomorphisms from X → H . He used this result to deduce cancellation properties of the direct product of graphs. We develop a result analogous to Lovász’s theorem, but in the class of graphs without loops and with weak homomorphisms. We apply it prove a general cancellation property for the strong product of graphs.
3

Biorthogonal wavelet bases for the boundary element method

Harbrecht, Helmut, Schneider, Reinhold 31 August 2006 (has links)
As shown by Dahmen, Harbrecht and Schneider, the fully discrete wavelet Galerkin scheme for boundary integral equations scales linearly with the number of unknowns without compromising the accuracy of the underlying Galerkin scheme. The supposition is a wavelet basis with a sufficiently large number of vanishing moments. In this paper we present several constructions of appropriate wavelet bases on manifolds based on the biorthogonal spline wavelets of A. Cohen, I. Daubechies and J.-C. Feauveau. By numerical experiments we demonstrate that it is worthwhile to spent effort on their construction to increase the performance of the wavelet Galerkin scheme considerably.

Page generated in 0.1055 seconds