571 |
A study of adenovirus mediated transfer of p53 and Rb in cervical cancer cell lines黃天貴, Huang, Tiangui. January 1999 (has links)
published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
|
572 |
Analytical review of reasons for delay in help-seeking for colorectal cancer related symptomsLiu, Siu-kwong., 劉兆廣. January 2009 (has links)
published_or_final_version / Community Medicine / Master / Master of Public Health
|
573 |
Randomized study on therapeutic gain by changing the chemo-radiotherapy from concurrent-adjuvant to induction-concurrentsequence, and the radiotherapy from conventional to acceleratedfractionation for advanced nasopharyngeal carcinomaTung, Pui-lam., 董沛霖. January 2009 (has links)
published_or_final_version / Public Health / Master / Master of Public Health
|
574 |
THE LINKAGE BETWEEN TRANSCRIPTION CONTROL AND EPIGENETIC REGULATION: THE SNAIL STORY AND BEYONDLin, Yiwei 01 January 2012 (has links)
Epigenetic deregulation contributes significantly to the development of multiple human diseases, including cancer. While great effort has been made to elucidate the underlying mechanism, our knowledge on epigenetic regulation is still fragmentary, an important gap being how the diverse epigenetic events coordinate to control gene transcription. In the first part of our study, we demonstrated an important link between Snail-mediated transcriptional control and epigenetic regulation during cancer development. Specifically, we found that the highly conserved SNAG domain of Snail sequentially and structurally mimics the N-terminal tail of histone H3, thereby functions as a molecular “hook”, or pseudo substrate, for recruiting histone lysine specific demethylase 1 (LSD1) repressor complex to the E-cadherin promoter. Furthermore, we showed that Snail and LSD1 are both required for E-cadherin repression and EMT induction, and their expression is highly correlated with each other in multiple human tumor tissues.
Our findings have important clinical ramifications in that compounds mimicking the SNAG domain may disrupt Snail-LSD1 interaction and inhibit EMT and metastasis. In the second part of our study, we designed a batch of compounds based on the structure of the SNAG domain and are currently screening for candidates capable of competing with SNAG peptide for LSD1 binding. In addition, we applied a peptide pulldown/mass spectrometry-coupled analysis to identify SNAG-interacting proteins, among which are many chromatin enzymes and modulators. Functional characterization of these proteins will help to elucidate the Snail-mediated epigenetic regulation process.
In the third part of our study, we found that Snail interacts with poly(ADP-ribose) polymerase 1 (PARP1) through a potential pADPr-binding motif and is subject to poly(ADP-ribosyl)ation, which can stabilize the Snail-LSD1 complex for enhanced PTEN suppression under DNA damage condition. Our findings added another layer to the delicate Snail transcriptional machinery, and indicated that PARP inhibitors may be applied in combination with conventional chemotherapies to target cancers with high expression of Snail and LSD1.
In summary, we demonstrated that Snail cooperates with multiple epigenetic machineries to induce EMT as well as survival of tumor cells. Our findings contribute to a better appreciation of Snail-mediated epigenetic network as well as diversification of therapeutic strategies against cancer.
|
575 |
Head and neck cancer services in the UK : a study of current management, patient views and factors affecting survivalEdwards, Dympna Mary Catherine January 1999 (has links)
No description available.
|
576 |
Mathematical modelling for early detection and treatment of cancerJones, Simon Keith January 1997 (has links)
No description available.
|
577 |
Subcellular analysis of normal and pathological gastrointestinal tissue with specific reference to peroxisomesWood, Adrian J. January 1994 (has links)
No description available.
|
578 |
Genetic analysis of chromosome 17 in ovarian tumours and cell linesCranston, Aaron-Neill January 1996 (has links)
No description available.
|
579 |
Modulating effects of Fumonisin B1 and Ochratoxin A on immune cells in human carcinomaAdam, Jamila Khatoon January 2005 (has links)
Submitted in partial fulfillment of the requirements for the degree of Doctor of Technology: Clinical Technology, Durban Institute of Technology, 2005. / Fumonisin B1 (FB1) and ochratoxin A (OTA) represent examples of mycotoxins of greatest public health and agro-economic significance. They exert adverse effects on humans, animals and crops that result in illnesses and economic losses. Fumonisin B1 are cancerpromoting metabolites of Fusarium proliferatum and F verticillioides, (formerly moniliforme), and are implicated in oesophageal cancer. Ochratoxins are metabolites of both Aspergillus and Penicillium species. These compounds are known for their nephrotoxic effects in all animal species and may promote tumours in humans. In man OTA exhibits unusual toxicokinetics, with a half-life in blood of 840 h (35 days) after oral ingestion. Although much is known regarding the toxicology of these toxins, little is known of the effects of these toxins on the immune system. The aim of this study was to determine and compare the immunornodulating effects of FB1 and OTA in human carcinoma. Initial experiments involved isolating lymphocytes and neutrophils from healthy volunteers. The isolated cells were exposed to either FB1 or OTA on a dose and time dependent level and LD50 of the toxins was determined. Thereafter, challenge tests were performed, whereby lymphocytes and neutrophils isolated from volunteers, oesophageal cancer patients and breast cancer patients were exposed to the LD50 dose of either FB1 or OTA for the appropriate time. The effect of the toxins was demonstrated by viability studies, light microscopy and electron microscopy. Cytokine receptors (CK, TNF and CSF) were evaluated by immuno-cytochemical methods and the levels of circulating cytokines (IL -1, IL-6, IL-8, IL-10 and TNF-a) were determined using ELISA kits. / D
|
580 |
The expression of xenobiotic metabolising enzymes in human tumoursMcKay, Judith A. January 1996 (has links)
The cytochromes P450 (CYPs), epoxide hydrolases (EHs) and glutathione S-transferases (GSTs) are three of the major families of enzymes involved in the metabolism of xenobiotics in the human body. Immunohistochemical analysis revealed a high frequency of expression of xenobiotic metabolising enzymes in all tumour types studied, in contrast to corresponding normal tissue which displayed only low levels of expression. Further examination of the CYP1 family was carried out by immunoblot analysis. All breast tumours studied were found to express CYP1B1, and not CYP1A1 or CYP1A2. Moreover, CYP1B1 was identified in a number of kidney tumours but not in corresponding normal kidney, indicating that CYP1B1 may be a tumour-specific form of CYP, RT-PCR, in combination with restriction digestion and DNA sequencing, was used to identify CYP mRNA species present in several tumour types. Although CYP1A1 mRNA was identified in breast carcinomas, CYP1B1 was found to be the most frequently expressed form of the CYP1 family in this tissue. CYP3A mRNA was also displayed by several breast tumours, and demonstrated by sequencing to be CYP3A5. A similar situation to breast tumours was observed in tumours of the gastro-intestinal and urinary tracts, with CYP1B1 being the most frequently expressed form of the CYP1 family, and only a small number of samples displaying evidence of CYP1A mRNA. The effects of the expression of xenobiotic metabolising enzymes in tumours may be complex, and depend upon the relative amounts of active protein present, but it is likely that they will exert an influence on both the development of carcinogenesis and the anti-cancer drug resistance of tumours.
|
Page generated in 0.0379 seconds