Spelling suggestions: "subject:"canopies urbain"" "subject:"canopy urbain""
1 |
Impact des microclimats urbains sur la demande énergétique des bâtiments - Cas de la rue canyonBozonnet, Emmanuel 23 June 2005 (has links) (PDF)
Les systèmes de conditionnement des ambiances intérieures participent pour une part importante à la demande énergétique des bâtiments, notamment en été. L'objectif de cette étude est de définir par des simulations thermoaérauliques l'interaction du microclimat urbain avec le bâti et sa demande énergéti-que de climatisation dans le cas d'une rue canyon.<br />Le modèle choisi, de type zonal, nous permet de décrire les paramètres de température et de vitesse d'air dans la rue, avec un degré de précision intermédiaire entre la modélisation CFD fine et les appro-ches nodales simplifiées. L'ensoleillement et les inter-réflexions dans la rue sont ensuite modélisés par une méthode simplifiée, développée et appliquée à l'étude de la convection naturelle dans une rue. Les écoulements dominants dus au vent sont par ailleurs étudiés à partir de données expérimentales, sur la base desquelles un modèle simplifié est proposé, en conditions isothermes. Le couplage des effets du vent et de la convection naturelle a été étudié dans le cas d'une rue canyon sur 28 jours. Nous concluons sur l'importance de la modélisation thermoaéraulique pour la détermination de l'effet d'îlot de chaleur urbain, ainsi que la demande énergétique des bâtiments.
|
2 |
Modélisation directe et inverse de la dispersion atmosphérique en milieux complexesBen Salem, Nabil 17 September 2014 (has links)
La modélisation inverse de la dispersion atmosphérique consiste à reconstruire les caractéristiques d’une source (quantité de polluants rejetée, position) à partir de mesures de concentration dans l’air, en utilisant un modèle direct de dispersion et un algorithme d’inversion. Nous avons utilisé dans cette étude deux modèles directs de dispersion atmosphérique SIRANE (Soulhac, 2000; Soulhac et al., 2011) et SIRANERISK (Cierco et Soulhac, 2009a; Lamaison et al., 2011a, 2011b). Il s’agit de deux modèles opérationnels de « réseau des rues », basés sur le calcul du bilan de masse à différents niveaux du réseau. Leur concept permet de décrire correctement les différents phénomènes physiques de dispersion et de transport de la pollution atmosphérique dans des réseaux urbains complexes. L’étude de validation de ces deux modèles directs de dispersion a été effectuée après avoir évalué la fiabilité des paramétrages adoptés pour simuler les échanges verticaux entre la canopée et l'atmosphère, les transferts aux intersections de rues et la canalisation de l’écoulement à l’intérieur du réseau de rues. Pour cela, nous avons utilisé des mesures en soufflerie effectuées dans plusieurs configurations académiques. Nous avons développé au cours de cette thèse un système de modélisation inverse de dispersion atmosphérique (nommé ReWind) qui consiste à déterminer les caractéristiques d’une source de polluant (débit, position) à partir des concentrations mesurées, en résolvant numériquement le système matriciel linéaire qui relie le vecteur des débits au vecteur des concentrations. La fiabilité des résultats et l’optimisation des temps de calcul d’inversion sont assurées par le couplage de plusieurs méthodes mathématiques de résolution et d’optimisation, bien adaptées pour traiter le cas des problèmes mal posés. L’étude de sensibilité de cet algorithme d’inversion à certains paramètres d’entrée (comme les conditions météorologiques, les positions des récepteurs,…) a été effectuée en utilisant des observations synthétiques (fictives) fournies par le modèle direct de dispersion atmosphérique. La spécificité des travaux entrepris dans le cadre de ce travail a consisté à appliquer ReWind dans des configurations complexes de quartier urbain, et à utiliser toute la variabilité turbulente des mesures expérimentales obtenues en soufflerie pour qualifier ses performances à reconstruire les paramètres sources dans des conditions représentatives de situations de crise en milieu urbain ou industriel. L’application de l’approche inverse en utilisant des signaux instantanés de concentration mesurés en soufflerie plutôt que des valeurs moyennes, a montré que le modèle ReWind fournit des résultats d’inversion qui sont globalement satisfaisants et particulièrement encourageants en termes de reproduction de la quantité de masse totale de polluant rejetée dans l’atmosphère. Cependant, l’algorithme présente quelques difficultés pour estimer à la fois le débit et la position de la source dans certains cas. En effet, les résultats de l’inversion sont assez influencés par le critère de recherche (d’optimisation), le nombre de récepteurs impactés par le panache, la qualité des observations et la fiabilité du modèle direct de dispersion atmosphérique. / The aim of this study is to develop an inverse atmospheric dispersion model for crisis management in urban areas and industrial sites. The inverse modes allows for the reconstruction of the characteristics of a pollutant source (emission rate, position) from concentration measurements, by combining a direct dispersion model and an inversion algorithm, and assuming as known both site topography and meteorological conditions. The direct models used in these study, named SIRANE and SIRANERISK, are both operational "street network" models. These are based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections and vertical exchange between a street canyon and the overlying atmosphere. The first part of this study is devoted to a detailed validation of these direct models in order to test the parameterisations implemented in them. This is achieved by comparing their outputs with wind tunnel experiments of the dispersion of steady and unsteady pollutant releases in idealised urban geometries. In the second part we use these models and experiments to test the performances of an inversion algorithm, named REWind. The specificity of this work is twofold. The first concerns the application of the inversion algorithm - using as input data instantaneous concentration signals registered at fixed receptors and not only time-averaged or ensemble averaged concentrations. - in urban like geometries, using an operational urban dispersion model as direct model. The application of the inverse approach by using instantaneous concentration signals rather than the averaged concentrations showed that the ReWind model generally provides reliable estimates of the total pollutant mass discharged at the source. However, the algorithm has some difficulties in estimating both emission rate and position of the source. We also show that the performances of the inversion algorithm are significantly influenced by the cost function used to the optimization, the number of receptors and the parameterizations adopted in the direct atmospheric dispersion model.
|
3 |
Modélisation de l'écoulement et de la dispersion dans un groupe d'obstacles selon les approches RANS et DDESVan Liefferinge, Raphaël 15 October 2010 (has links)
La pollution atmosphérique et ses conséquences sur la santé et l'environnement constituent un domaine d'étude complexe à cause du nombre de phénomènes physiques mis en jeu. L'objectif de ce travail est d'étudier les principales caractéristiques de l'écoulement et de la dispersion d'un scalaire passif au sein de la canopée urbaine. Pour ce faire, un code numérique a été développé. Il résout les équations de Navier-Stokes dans le cadre d'un écoulement incompressible pour une atmosphère neutre en faisant usage de la méthode de la compressibilité artificielle selon la méthode des volumes finis. Le modèle de Spalart-Allmaras a été utilisé pour la modélisation de la turbulence. La canopée urbaine est explicitement prise en compte et est modélisée par un groupe d'obstacles de forme cubique. Le code fut d'abord testé pour des configurations bidimensionnelles avec un seul et 4 obstacles en configuration alignée selon deux approches : une simulation stationnaire RANS et instationnaire URANS qui reproduit le décrochement tourbillonnaire. La prise en compte du décrochement tourbillonnaire se traduit par une diffusion dans le sillage turbulent du groupe d'obstacles. Les résultats ont été comparés à des mesures expérimentales et d'autres résultats numériques de référence dans la bibliographie et montrent l'amélioration du champ de vitesse moyen par l'approche code fut ensuite testé sur un cas tridimensionnel avec un groupe d'obstacles organisés selon 2 configurations géométriques: alignée et en quinconce. Afin d'éliminer les effets des conditions aux limites, l'écoulement fut calculé sur un volume élémentaire de calcul en utilisant des conditions aux limites périodiques. Deux types de simulations furent réalisés: l'approche RANS classique et la version DDES du modèle de Spalart-Allmaras. L'écoulement obtenu par la DDES améliore de façon significative les résultats par rapport au RANS en comparaison de mesures expérimentales de simulation directe et montrent la bonne potentialité du modèle. La dispersion d'un scalaire passif émis au sein de la canopée fut obtenue sur un domaine plus important comprenant 16 volumes élémentaires par le biais des conditions aux limites périodiques utilisées. Une analyse du champ de concentration a ensuite été réalisée et des comparaisons effectuées en fonction du type de calcul et de la configuration géométrique. / Atmospheric pollution and its impact on health and the environment depend on many physical phenomena, and this makes it a difficult subject to study. The main objective of this work is to investigate the main characteristics of the flow and dispersion of a passive scalar in the urban canopy. Specifically, the urban canopy is simulated by a group of cubical obstacles in a neutrally-buoyant atmospheric boundary layer. A numerical code bas been developed as a tool to aid in this study; flow is computed by solving the Navier-Stokes equations for an incompressible flow, using a finite volume approach, and the method of artificial compressibility. The turbulence is modeled using the method proposed by Spalart and Allmaras. The code was tested first in a 2-D configuration, for flow over a single obstacle, and over a group of 4 obstacles; in both cases two types of simulation were studied: a stationary RANS simulation, and an unsteady RANS (URANS), which reproduced vortex shedding from the obstacles. The explicit inclusion of vortex shedding in the URANS simulation leads to diffusion in the obstacle wakes, and the results compare better with experimental measurements and other published numerical simulations than do those for the RANS simulations. The code was then tested for some 3-D cases consisting of a group of obstacles arrangcd either in aligned or staggered configurations. In order to avoid the influence of boundary conditions, the flow field was simulated using periodic boundary conditions and a small sub-unit from the group of obstacles. Two types of simulation were performed: a classical RANS type calculation and the DDES proposed by Spalart and Allmaras. The results obtained using the ODES agree much more closely with experimental measurements and the results of other numerical simulations than do those obtained using RANS, and indicate the potential of this approach. The dispersion of a passive scalar in the urban canopy was simulated on a much larger domain consisting of 16 of the sub-units used to compute the flow field. The concentration fields were analyzed to show the influence of the geometrical configuration and the type of model.
|
4 |
Ecoulement sur canopées faiblement immergées : de la turbulence aux lois de frottementChagot, Loic 11 February 2019 (has links)
Cette thèse s’inscrit dans le cadre du projet ANR (Agence National de la Recherche) "Flowres" ayant pour objectif d’améliorer la prédiction des crues extrêmes. Il a récemment été démontré que le dérèglement climatique tend à augmenter la fréquence et l’intensité de ces événements extrêmes, provoquant ainsi de nombreux dégâts, notamment dans les zones urbaines. L’objectif de ce travail de thèse a été d’étudier les configurations extrêmes, où une "canopée urbaine" est faiblement immergée. Cette étude repose sur une série de mesures expérimentales réalisées en canal hydraulique à surface libre, dans lequel différentes profondeurs de canopée et niveau d’immersion ont été considérées. Les canopées étudiées sont composées d’alignements d’éléments prismatiques. La première partie de ce travail à consister à élaborer le dispositif expérimental permettant d’acceder à la structure complète D de ces écoulements. Pour cela, un dispositif de PIV 2D-2C a été mis en place, couplé à l’utilisation de moyens techniques sophistiqués, comme des prismes transparents en verre BK7 ainsi qu’une optique télécentrique. Ce dispositif a permis d’obtenir des statistiques hautement résolues tant temporellement que spatialement, et ont aussi permis d’étudier la sensibilité de ces statistiques à l’échantillonnage spatial. Une fois le système de mesure mis en place, l’effet de l’immersion et de la profondeur de canopée sur la structure verticale 1D de ces écoulements a ensuite été étudiée. Les résultats montrent que la structure d’un écoulement dans une canopée profonde (k/` = 6) fortement immergée peut être décrite par différentes couches (sillage, couche de mélange, couche logarithmique). Cependant, la diminution de l’immersion et/ou de la profondeur de canopée tend à forcer les interactions entre les couches, et en supprimer certaines dans certains cas. De plus, on remarque que pour de très faibles immersions, le tenseur total devient négatif. Afin de comprendre et caractériser ce phénomène inattendu, une analyse par quadrant du tenseur de Reynolds a été effectuée. Dans le cas d’écoulements fortement immergés, les éjections (Q 2 ) et les balayages (Q4 ) contribuent majoritairement à l’écoulement. Cependant, la diminution de l’immersion est accompagnée d’une augmentation importante d’événements Q 3 dans la canopée, conduisant à un tenseur de Reynolds négatif pour des cas extrêmes. Pour finir, la compréhension de ces écoulements turbulents par l’intégration des profils verticaux 1D a permis de déterminer les lois de frottement globales associées. Il a été montré qu’il est nécessaire de définir correctement les grandeurs utilisées pour le coefficient de frottement f 0 , comme une vitesse débitante prenant en compte la porosité de la canopée ou encore une vitesse de frottement u 0 basé sur le fond du canal et non sur le sommet des prismes. On observe une corrélation entre l’immersion de la canopée et le coefficient de frottement f 0 . De plus, deux comportements distincts semblent émerger pour les faibles (h/k < 4) ou fortes (h/k > 4) immersions. / This PhD work is part of the ANR project "Flowres" where aims is to improve the prediction of nextreme flood events. It has been shown that the climate change will increase the frequency and intensity of these extreme events, leading to major damages, especially in urban areas. The objective of this PhD was to investigate extrem configurations where urban canopy is weakly submerged. This work is based on experimental analysis carried out in a hydraulic open-channel flume in which various canopy depth and submergence levels were investigated. The canopies were built by alignment of prismatic roughness elements. The first part of this PhD work aimed at developping the experimental set-up allowing to obtain the complete structure of the flow. To this end, a PIV 2D-2C apparatus was used, paired with the use of advanced technical tools, such as prisms of BK7 glass and a telecentric optics. This set-up has enabled to obtain highly converged statistics (spatially and temporally), allow an investigation of sensitivity of these statistics to the spatial sampling. Once the experimental set-up designed, the effect of the flow immersion and of canopy depth on the 1D vertical structure was then investigated. Our results have shown that the flow structure of a depth canopy with an high submergence can be described by different (layers wake layer, mixing layer, logarithmic zone). A decrease of the submergence and/or the canopy depth increase interactions between the different layers, and sometimes, cancel it. Additionally, for some low submergence flow regimes, the total stress becomes negative. In order to understand and better characterize this unexpected result, we performed a quadrant analysis of the Reynolds stress. In the case of highly submerged flow, ejections (Q 2 ) and sweeps (Q 4 ) mostly contribute to the flow. By contrast, the decrease of the submergence is coupled with an significant increase of the Q3 event within the canopy. It can lead to a negative Reynolds stress in some flow regimes. Finally, the understanding of turbulent flows through integration of the 1D vertical profiles allowed calculation of thes associated global friction law. It has been shown that it is necessary to properlydefine the quantities used for the friction coefficient f 0 , such as a flow rate taking into account the porosity of the canopy, and a speed of friction u 0 based on the bottom of the channel (and not on the top of the prisms). There is a correlation between canopy submergence and the coefficient of friction f 0 . Moreover, two different behaviour appear for low submergence (h/k < 4) or high submergence (h/k > 4).
|
5 |
Analysis of the unsteady boundary-layer flow over urban-like canopy using large eddy simulation / Analyse par simulation des grandes échelles de l’écoulement de couche limite au-dessus d’une canopée urbaineTian, Geng 20 December 2018 (has links)
L’urbanisation croissante fait émerger des enjeux sociétaux et environnementaux relatifs à la pollution atmosphérique et au microclimat urbain. La compréhension des phénomènes physiques de transport de quantité de mouvement, de chaleur et de masse entre la canopée urbaine et la couche limite atmosphérique est primordiale pour évaluer et anticiper les impacts négatifs de l’urbanisation. Les processus turbulents spécifiques à la couche limite urbaine sont étudiés par une approche de simulation des grandes échelles, dans une configuration urbaine représentée par un arrangement de cubes en quinconce. Le modèle de sous-maille de type Smagorinsky dynamique est implémenté pour mieux prendre en compte l’hétérogénéité de l’écoulement et les retours d’énergie des petites vers les grandes structures. Le nombre de Reynolds basé sur la hauteur du domaine et la vitesse de l’écoulement libre est de 50000. L’écoulement est résolu dans les sous-couches visqueuses et le maillage est raffiné dans la canopée. Le domaine est composé de 28 millions de cellules. Les résultats sont comparés à la littérature et aux données récentes obtenues dans la soufflerie du LHEEA. Chaque contribution au bilan d’énergie cinétique turbulente est calculée directement en tout point. Cette information, rare dans la littérature, permet d’étudier les processus dans la sous couche rugueuse. Grâce à ces résultats 3D, l’organisation complexe de l’écoulement moyen (recirculations, vorticité, points singuliers) est analysée en relation avec la production de turbulence. Enfin, une simulation où les obstacles sont remplacés par une force de traînée équivalente est réalisée à des fins d’évaluation de cette approche. / The rapid development of urbanization raises social and environmental challenges related to air pollution and urban climate. Understanding the physical processes of momentum, heat, and mass exchanges between the urban canopy and the atmospheric boundary-layer is a key to assess,predict and prevent negative impacts of urbanization. The turbulent processes occurring in the urban boundary-layer are investigated using computational fluid dynamics (CFD). The unsteady flow over an urban-like canopy modelled by a staggered arrangement of cubes is simulated using large eddy simulation (LES). Considering the highspatial and temporal in homogeneity of the flow, a dynamic Smagorinsky subgrid-scale model is implemented in the code to allow energyback scatter from small to large scales. The Reynolds number based on the domain height and free-stream velocity is 50000. The near-wall viscous sub-layers are resolved and the grid is refined in the canopy resulting in about 28 million grid cells. LES results are assessed by comparison with literature and data recently acquired in the wind tunnel of the LHEEA. The turbulent kinetic energy budget in which all contributions are independently computed is investigated. These rarely available data are used to analyse the turbulent processes in the urban canopy. By taking advantage of the three-dimensionality of the simulated flow, the complex 3D time-averaged organization of the flow (recirculation, vorticesor singular points) is analyzed in relation with production of turbulence. Finally a drag approach where obstacles are replaced by an equivalent drag force is implemented in the same domain and results are compared to obstacle-resolved data.
|
Page generated in 0.072 seconds