71 |
The Study of Flow Dynamics in Kao-ping Submarine Canyon and near Kao-ping ShelfWu, Meng-lin 27 August 2004 (has links)
The interaction between the submarine canyon topography and coastal current has very important influence on the flow field around the canyon. This study aims to understand the nature of the interaction and the associated dynamic around the Kao-ping Submarine Canyon in southern Taiwan. In 2000 and 2002 year during the flood season of the Kao-ping River, moored instruments were deployed in the Kao-ping Submarine Canyon, Kao-ping River mouth, and Kao-ping shelf for one month. The results revealed sea surface fluctuations were dominated by the tide. The sea surface fluctuations at Kao-ping River mouth and Liu-Chiu Yu Island belong to mixed tide with diurnal dominance. But the sea surface fluctuations on the shelf belong to mixed tide is having by semi-diurnal dominance. The current fields of the shelf and canyon both are dominated by semi-diurnal tide. The energy of tidal current is stronger with increasing canyon depths. Results of harmonic analysis show that the current field of canyon bottom layer and on the shelf both is dominated by the M2 component. The variation of temperature field is regulated by tidal currents. During floods, shelf flow is northwestward and the current of canyon bottom layer flow downcanyon. During ebbs, shelf flow is southeastward and the current of canyon bottom layer flow upcanyon. The interaction between the temperature field of submarine canyon and shelf is pronounced. The tidal fluctuation of temperature field on shelf is especially conspicuous during spring tide. When temperature decreases in the submarine canyon, the shelf temperature begins to decline. When temperature increases in the submarine canyon, the shelf temperature begins to arise. The results of harmonic analysis reveal that the temperature field of the canyon leads that of the shelf around 2.08 hours. The current field of bottom layer in the canyon flows towards the canyon head during ebb tides. It brings the colder and deeper water to canyon head along the canyon axis. The colder and deeper water causes the water temperature to decrease in the canyon and on the shelf. During flood tides, the colder and deeper water withdraw from the canyon head region, which makes the shelf temperature increase.
The currents on the Kao-ping shelf both are largely alongshore in 2000 and 2002 observations. The alongshore mean current is northwestward. The current velocity of surface layer is greater than that of the bottom layer. In Kao-ping Submarine Canyon, the mean current of bottom layer at 195m and 245m flows in opposite directions. It flows downcanyon offshore at 195m and upcanyon at 245m. The current velocity of 245m is greater than 195m. Mean current flow of bottom layer is downcanyon along canyon axis at 280m in 2002 year. During the transition between ebb tide and flood tide, temperature fields of canyon and shelf show trend reversal. Submarine canyons play an important role in transport deeper and colder water. The interaction of canyon and shelf current field can influence the variation of shelf temperature. The tidal current velocity is stronger in spring tide. It is easier to make deeper and colder water to ascend to the shelf. The influence of current is more noticeable to adjust on the shelf and canyon temperature fields during the spring tide. The results of scale analysis show the canyon topography can influence coastal current when the radius deformation of the canyon is smaller than the canyon width. The canyon current will produce phenomena of upwelling and down-welling with tidal periods. This seems match Klink¡¦s¡]1996¡^model results.
|
72 |
Concentrations and sources of polycyclic aromatic hydrocarbons in sediment cores of Kaoping submarine canyonChang, Wei-kai 08 August 2005 (has links)
Cores and sediment traps collected from Kao-ping Canyon were used to reconstruct historical record of PAHs contamination and find out the possible sources, distributions, trends and flux of PAHs. The sedimentary record of PAHs shows that the average concentration of total PAHs was 310 ng/g dry wt. (264¡ã364 ng/g) which was lower than coasts of the other countries. According to diagnostic ratios and statistical analysis, we identify sources of PAHs and suggest that all up-cores were dominated by petrogenic sources, but all down-cores except for C980 and S1 were tended to pyrogenic or mixed sources. In contrast, both C980 and S1 were showed higher perylene/£UPAHs (%), which suggests that biogenic sources dominate in C980 and S1. In comparison with sediment quality guidelines (SQGs), the PAHs concentrations of all sediment cores weren¡¦t exceeded the criteria, which suggests that no evident adverse biological effects exist caused by PAHs in Kao-ping Canyon.
It shows that the transition from coal to petroleum fuel use corresponding to the total concentrations of PAHs decrease recorded during 1893-1935 period in the sediment core. A PAHs concentration peak also recorded during the World War ¢º, 1893-1935. Because of increase of importing fossil fuel and the growth of heavy industrials in Kao-Ping area, the total concentrations of PAHs were shown evidence of increase again since 1950s in the core from Kao-ping Canyon.
The average PAHs flux in the upper and lower mooring deployed in Kao-ping Canyon were 66 and 108 £gg/m2/d, respectively, which were higher than coasts of the other countries. The PAHs sources of sinking particles were dominated by petrogenic sources which were as similar sources as all up-cores.
|
73 |
Inferred Suspended Sediment Transport Process in the Head Region of Kao-Ping Submarine Canyon Based on Temporal and Spacial Hydrographic ObservationsHuang, Jeffery 12 July 2002 (has links)
Kao-ping submarine canyon is straightly connected with Kao-ping River. Thus, it is influenced by the river¡¦s discharge. In order to investigate this seasonal difference in the canyon, we conducted several researches, which were based on temporal and spacial observations of the hydrological and dynamical characteristic of the canyon. We also studied the transport of suspended sediment particles in the canyon according to the distribution of SSC (suspended sediment concentration). In our research, we made along-canyon profile observations. We collected data by using CTD, ADCP and Transmissometer on R/V Ocean Researches Vessel ¢». The data include flood season cruises (CR536, CR248, CR552, CR634 and CR639), and dry season cruises (CR572, CR598, CR608).
Based on the temporal and spacial observations, in June and July 1999 we found a cold pool at the location where canyon topography changed sharply. We also found the density disturbance and high concentration at the same location. When the tidal current was landward in the deep canyon, we can observes upwelling in the head region of the canyon. Conversely, we can observe downwelling while the tidal current was seaward. Moreover, we observed a strong vertical flow in the dry season, which can make resuspended easily.
Besides, we deployed an instrument covey, including sediment traps, Recording Current Meter (RCM), wave gauge (S700) and Laser In-Suit Scattering and Transmissiometry (LISST-100), at the location where we previously observed SSC localizes high for one month (from June to July 2000) to investigate the temporal relations among temperature, salinity, flow, and suspended particles. From this time series observation we found a coincidence between cold temperature signal and the northward flow. It showed that the cold water from deep sea was transported to the head region of the canyon by a ¡¥Pump¡¦ process. We also observed the suspended particles at the top (195m), middle (245m), and the bottom (285m) of the ocean. According to their different sizes, we found that the upper depth has more sands which were from the continental shelf, and the middle and lower depth have more silt and clay.
Subsequently, we used Empirical Orthogonal Function (EOF) analysis to explain the relationship among hydrological and flow factors of the canyon. We concluded that two major modes to explain the observed relationship: Submarine canyon seasonal effect, and dynamic stability.
|
74 |
Distribution Patterns of Lead-210 and Polonium-210 Along the Gaoping Submarine CanyonShen, Ya-ting 09 September 2008 (has links)
Abstract
The purposes of this study are to understand the variations of the particulate and dissolved 210Pb and 210Po profiles in the water column of Gaoping Submarine Canyon(GSC) and to compare the distributions of the two nuclides in settling particles and sediments. Different types of samples taken in this area were analyzed for 210Pb and 210Po in order to understand processes involved in the particulate transport. Seawater samples were collected from Ocean Researcher III Cruise (ORIII-1192 in Nov, 2006). Sediment trap was deployed on Jun 21, 2000 and recovered on Jul 20, 2000 (ORIII-634). Sediments cores collected from ORIII-642 on Jul 21, 2000 (Core A-B) and ORIII-696 on Apr 7, 2001 (Core D-F) using multicorer.
The profiles of 210Pb and 210Po in water column could be divided into two types one is estuarine and the other is oceanic. The profiles of dissolved nuclides in estuarine stations (CW1 to 3) are lower than in the oceanic stations (CW4-5). Because stations CW1 to 3 are controlled by large amount of terrigenous particles, scavenging in the three stations is quite obvious.
The nuclide activities of the settling particles decrease with depth, probably due to dilution by resuspended surface sediment of lower activities, similar to observations in this study area. The downcore distributions of 210Pb and 210Po show clearly disequilibria between the two nuclides and suggested that sediment deposited in GSC has been disturbed down to 40-50 cm deep. All the data indicate the 210Po in the water column and in the settling particles as well as in the surface sediments is strongly deficient relative to its parent, 210Pb. Using a box-model and considering the influence of horizontal transports, we may calculate the residence times of 210Po in the 100m water layer in the GSC, to be 2.1d for the dissolved phase and 7.0 d for the particulate phase with a total 210Pb residence time is 3.8d.
|
75 |
Biogenic Particle Transport in the Gaoping Submarine Canyon off Southwestern Taiwan- Comparison of T6KP and T7KP Sediment TrapsLin, Yi-Jiun 04 September 2009 (has links)
Submarine canyons are common features on continental margins worldwide. They are important natural conduits for transfer of terrigenous sediments to the deep sea, and thus, preferential pathways for shelf-slope exchange. The purpose of this study is to understand the biogenic particle transport in the seasons according two sediment trap moorings deployed in the Gaoping submarine canyon. The T6KP mooring was deployed in dry season while the T7KP mooring was deployed in wet season. Two typhoons, Kalmaegi and Fung Wong, invaded Taiwan during 16-18 and 26-29 July within the deployment of T7KP. We discussed the influence of rainfall and river discharge on biogenic particle transport based on results of the two sediment traps. The foraminiferal abundance in sediment traps in comparison with plankton tows was discussed regarding the particle transport mechanism of the water column in the Gaoping submarine canyon.
The biogenic particle transport was a tide-dominated situation and displayed a periodic variation in dry season. In wet season, fine grain fraction (less than 63 micro meter) was dominant in the particle size and sedimentary condition was flood-dominated. The sedimentary condition was back to the tide-dominated state approximately 15 days after Kalmaegi typhoon (16-18, July). The activities of 210Pb and 234Th in the lower trap of T7KP mooring were an order less than that in T6KP mooring, indicating particles scavenge nuclides of the water column less effectively in wet season than in dry season. The absolute abundances of foraminifera in the canyon revealed that the biogenic particle was influenced by the terrigenous input and was different between dry and wet seasons. Seasonal variations of total flux and relative abundance of living foraminifera were evident in the upper 200 m water column near the Gaoping submarine canyon. Therefore, the seasonal variations of living foraminifera might be reflected on the biogenic particle transport in different seasons in the Gaoping submarine canyon.
|
76 |
Numerical simulation of topography and stratification effects to the internal tide in Gaoping Submarine CanyonLee, Ying-Tsao 10 September 2009 (has links)
It is generally understood that tidal currents ominated the flow field in many submarine canyons, and internal tide may be an order of magnitude more energetic than that of barotropic. The internal tide can be generated and amplified in a marine environment with the strong vertical density interface. The barotropic tides were known to play the dominant
role in driving the internal tides at the topographic relief or shelf break.This research tries to look at the mechanisms of internal tides generation and propagation in the Kaoping Submarine Canyon off southwestern Taiwan, using Princeton Ocean Model (POM) with different settings. The model was tested with bottom topography of flat, a slope and real water
depth, with and without vertical stratifications. The model settings are grid size 500m, simulate period days, radiation boundary condition at 4 sides. The model forcings are sea level variations at the west side, both semidiurnal tide (M2) and mixed tide (M2+K1) based on OSU tidal model TPXO 6.2. The results suggest that the offshore M2 tidal forcing
can generate large internal tidal currents within the canyon with vertical density stratification. The internal tidal currents at the upper-layer of the canyon lag that of lower-layer 3~5 hours. There is no time lag and no
amplification of current in the canyon if there is no stratification. There is a transition zone of minimum flow at depth of about 100-200m. Below the interface, the amplitude of semidiurnal internal tidal current increased with water depth in the canyon. The simulated density contours suggest a 120m amplitude vertical fluctuation center at 150m depth, with 5¢J temperature fluctuation. The computed baroclinic energy flux indicates that the energy in lower layer of the canyon is stronger than that of upper
layer. The high energy flux appears at the canyon foot and rim, and propagates along the canyon axis landward.
|
77 |
A geology training manual for Grand Canyon National Park /Wagner, Stacy S. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2003. / Typescript (photocopy). Includes bibliographical references (leaves 171-174). Also available via the World Wide Web.
|
78 |
The preparation and delivery of expository sermons through the development of an inverted preaching paradigmBurleson, Travis January 1900 (has links)
Thesis (D. Min.)--New Orleans Baptist Theological Seminary, 2002. / Includes abstract and vita. "November 2002." Includes bibliographical references (leaves 180-188).
|
79 |
Quantifying the sedimentology, stratigraphy and morphodynamics of submarine channelsFernandes, Anjali Mary 26 August 2015 (has links)
This dissertation examines how turbidity currents interact with submarine channels. Turbidity currents display exaggerated super-elevation at the outer banks of channel bends, because they have low excess densities relative to the ambient sea-water. Low-velocity zones form where flows separate from the inner banks. In a high-resolution seismic volume, I mapped 226 inclined surfaces associated with bank-attached bars in 16 channel bends of 2 buried sinuous channels. Position and geometries of bars indicate construction from suspended sediment in flow separation zones. Concave-bank benches, first identified in rivers where they are built from fully-suspended sediment deposited within flow separation zones in channel bends, comprise approximately 19% of this dataset. Bars have high median slopes (10°-11°) and occupy less than 30% of channel width. Associated channels migrated a median distance of less than 70% of the channel width and incised 20-30% of the channel depth. These bars are therefore interpreted to have formed during sediment bypass or weak erosion. I have analyzed the sedimentology and stratigraphy of a well-exposed channel complex, in the Permian Brushy Canyon Formation, west Texas. A steeply-inclined set of fine-grained sandstone beds (median dip=10°) at the margin of the channel complex is interpreted as deposits of a bank-attached bar. Beds are characterized by sub- to super-critically climbing ripple-lamination, planar stratification and trough cross-stratification. Paleo-transport directions are at high angles, 20-120°, to the dip azimuths of interpreted bar surfaces. Geometries of bounding surfaces, sedimentation styles and grain-size data were used to construct a facies model for suspension-dominated, bank-attached bars, built within flow-separation zones in submarine channels. I designed physical experiments to examine how erosional turbidity currents evolve channel- bend topography. Time-lapse bathymetry maps capture the evolution of raised benches tied to sedimentation within flow separation zones and erosion outside of separation zones. Erosional currents showed sensitivity to local conditions. The pattern of erosion was connected to roughness elements such as bend curvature and scours on the bed. Turbidity current run-up at the outside of bends produced a greater aerial extent of side-wall erosion than is commonly seen in incisional rivers.
|
80 |
Stratigraphy and sedimentology of the Willow Canyon Formation, southeastern ArizonaSumpter, Lawrence Thomas, 1957- January 1986 (has links)
No description available.
|
Page generated in 0.0395 seconds