1 |
The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection MechanismsBehera, Swayambhu Prasad 08 1900 (has links)
Nanoporous low-k dielectrics are used for integrated circuit interconnects to reduce the propagation delays, and cross talk noise between metal wires as an alternative material for SiO2. These materials, typically organosilicate glass (OSG) films, are exposed to oxygen plasmas during photoresist stripping and related processes which substantially damage the film by abstracting carbon, incorporating O and OH, eventually leading to significantly increased k values. Systematic studies have been performed to understand the oxygen plasma-induced damage mechanisms on different low-k OSG films of various porosity and pore interconnectedness. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and atomic force microscopy are used to understand the damage kinetics of O radicals, ultraviolet photons and charged species, and possible ways to control the carbon loss from the film. FTIR results demonstrate that O radical present in the plasma is primarily responsible for carbon abstraction and this is governed by diffusion mechanism involving interconnected film nanopores. The loss of carbon from the film can be controlled by closing the pore interconnections, He plasma pretreatment is an effective way to control the damage at longer exposure by closing the connections between the pores.
|
2 |
Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical ModificationsKazi, Haseeb 05 1900 (has links)
In-situ x-ray photoemission (XPS) and ex-situ FTIR studies of nanoporous organosilicate glass (OSG) films point to the separate roles of radicals vs. VUV photons in the carbon abstraction. The studies indicate that reaction with O2 in presence of VUV photons (~123 nm) result in significant carbon abstraction within the bulk and that the kinetics of this process is diffusion-limited. In contrast, OSG exposed to atomic O (no VUV) results in Si-C bond scission and Si-O bond formation, but this process is self-limiting after formation of ~1 nm thick SiO2 surface layer that inhibits further diffusion. Therefore, the diffusion-dominated kinetics of carbon abstraction observed for OSG exposed to O2 plasma is definitively attributed to the diffusion of O2 down OSG nanopores, reacting at photo-activated sites, rather than to the diffusion of atomic O. Pretreatment of OSG by 900 eV Ar+ ion bombardment also results in formation of 1 nm thick SiO2-like surface overlayer that inhibits O2 diffusion, inhibiting VUV+O2 and O2 plasma-induced reactions, and that the effectiveness of this treatment increases with ion kinetic energy. On the contrary, organosilicate glass (OSG) films with backbone carbon (-Si-R-Si-) exhibit significantly enhanced resistance to carbon loss upon exposure to O2 plasma, radicals and VUV+O2 compared to films with terminal methyl groups (Si-CH3). Films incorporating backbone carbon chains (-Si-R-Si-) were deposited from 1,2 bis (triethoxysilyl) ethane (BTESE) precursor by ebeam or plasma cross-linking. The radical effects on BTESE film indicates negligible carbon loss or Si oxidation, combined with C-O bond formation, under conditions where OSG films with terminal methyl groups exhibit > 80% carbon loss within the surface region of the film. C-O bond formation is never observed for terminal CH3 groups. Further, backbone carbon (-Si-R-Si-) films exposed to VUV+O2 exhibit self-limiting, minimal net carbon loss. This indicates that plasma-induced Si-C bond rupture still occurs in the linking unit, but with a low probability of simultaneous rupture of both Si-C bonds required for abstraction of an in-line methylene bridging group. The data thus demonstrate that OSG films containing backbone carbon groups exhibit greatly reduced rates of carbon loss in the presence of O2 plasma, radicals or VUV+O2 compared to films with terminal carbon groups due to fundamentally different patterns of Si-C bond scission. The results demonstrate the potential of backbone carbon low-k films to resist plasma induced damage.
|
Page generated in 0.1027 seconds