1 |
MODELING AND FABRICATION OF LIGHTWEIGHT, DEFORMABLE MIRRORS SUBJECTED TO DISCRETE LOADINGRoche, Michael E. 01 January 2001 (has links)
The push towards larger diameter space telescope mirrors has caused the space industry to look at lightweight, deformable alternatives to the traditional monolithic mirror. One possible solution to the dilemma is to use the piezoelectric properties of certain materials to create a lightweight, deformable mirror. Current piezoelectric deformable mirror designs use individual actuators, creating an immensely complex system as the mirrors increase in size. The objective of this thesis is to aid in the design and development of lightweight, deformable mirrors for use in space based telescopes. Two topics are considered to aid this development. A doubly curved, lightweight, bimorph mirror is investigated. The fabrication method entails forming a thin film piezoelectric polymer into a doubly curved shape using a specially designed forming machine. The second topic entails the finite element modeling of a composite mirror substrate with a piezoceramic actuator backing. The model is generated using a meshing program designed to generate off-centered spot loads of electric potential. These spot loads simulate the actuation due to an electron gun. The effects of spot location and size on mirror deformation are examined.
|
2 |
Study on the impact of CNT or graphene reinforced interlaminar region in compositesKarlsson, Tobias January 2019 (has links)
The interlaminar region is a contributing factor to the limited electrical conductivity of carbon fiber/epoxy composites. Consisting of electrically insulating epoxy matrix between conductive layers of carbon fiber, the interlaminar region prevents electrical interaction between the carbon fiber layers and electrical conduction in the through thickness direction.The interlaminar region in thin [0,0] carbon fiber/epoxy composites has been reinforced by carbon nanotubes (CNT) by two methods. First by aligned CNT forests from N12 Technologies and secondly by self-produced Buckypapers, porous CNT films, of different areal densitites. Two batches of laminates modified by aligned CNTs, having different curing conditions, and laminates modified with Buckypapers were manufactured. The laminates were evaluated by their electrical conductivity and electromagnetic interference shielding efficiency (EMI SE). The addition of external pressure to the laminates during curing brought an increase in longitudinal conductivity, a consequence of higher fiber packing. Also, both reinforcement methods increased the longitudinal conductivity through improved electrical interaction between the carbon fiber layers. However, only the Buckypaper reinforcement augmented the transversal conductivity significantly, acting as a highly conductive route in the interlaminar region. Both batches of aligned CNT modified laminates exhibited equal EMI SE, questioning the influence of the conductivity of the laminate on its EMI SE. Also, the increase in EMI SE brought by the aligned CNT forests were negligible compared to the reference. However, the reinforcement by Buckypapers proved successful, reaching -45/-50 dB at 1000 MHz, improving from 30 dB of the unmodified reference at the same frequency.
|
3 |
Systems Engineering Analysis for Optimum Selection Protocol for Thermal Expansion Measurement of a Carbon Fiber Reinforced Composite TubeUchimiya, Ronald 01 July 2018 (has links)
A material’s Coefficient of Thermal Expansion (CTE) is a valuable physical property, particularly for structural fiber reinforced composites that are routinely used in satellite/aerospace applications. Satellite space structures are routinely designed with a high degree of dimensional and thermal stability. Designing and verifying for near zero CTE performance is a common design requirement. The CTE is routinely a physical property with known values for common materials. However, the strength, stiffness and CTE properties on a multi-ply graphite fiber reinforced laminate composite can be tailored to specific engineering requirements. Because of this, a method of verification (testing) is routinely performed to ensure these requirements are met.
|
4 |
Failure Mode Identifications Of Rc Beams Externally Strengthened WithO'Riordan-Adjah, Chris 01 January 2004 (has links)
The application of carbon reinforced-fiber polymers (CFRP) to structures is a new development that is still under intense research. However, the rehabilitation or retrofit of damage reinforced concrete members by the external bonding of CFRP is becoming increasingly popular in the construction industry. The objective of the tests presented in this thesis is to study different CFRP designs on the reinforced concrete beams and compare their failure modes. The main goal is to determine the CFRP design on the reinforced concrete beams that result in a progressive and gradual failure mode with enough warning before final failure. Different CFRP designs are investigated and compared with theoretical predictions. A retrofitting concept is also employed in this research. The retrofitting concept is the idea of strengthening cracked structures. The strengthening of the beams performed in the lab is carried out under sustained loads and on previously cracking the beams to simulate the realistic case that is usually faced in practice on the field. The RC beams are strengthened in flexure to double their flexural capacity by applying the adequate amounts of CFRP to the tension face of the beams. Due to the CFRP strengthening and increasing the strength capacity of the beams, different CFRP anchorage methods are employed to the beams for additional shear reinforcement to ensure flexural failure. The different CFRP anchorage methods will also be observed for their effectiveness during the debonding and propagation mechanism as well as evaluated for their progressive failure mode.
|
5 |
Health Management and Prognostics of Complex Structures and SystemsJanuary 2019 (has links)
abstract: This dissertation presents the development of structural health monitoring and prognostic health management methodologies for complex structures and systems in the field of mechanical engineering. To overcome various challenges historically associated with complex structures and systems such as complicated sensing mechanisms, noisy information, and large-size datasets, a hybrid monitoring framework comprising of solid mechanics concepts and data mining technologies is developed. In such a framework, the solid mechanics simulations provide additional intuitions to data mining techniques reducing the dependence of accuracy on the training set, while the data mining approaches fuse and interpret information from the targeted system enabling the capability for real-time monitoring with efficient computation.
In the case of structural health monitoring, ultrasonic guided waves are utilized for damage identification and localization in complex composite structures. Signal processing and data mining techniques are integrated into the damage localization framework, and the converted wave modes, which are induced by the thickness variation due to the presence of delamination, are used as damage indicators. This framework has been validated through experiments and has shown sufficient accuracy in locating delamination in X-COR sandwich composites without the need of baseline information. Besides the localization of internal damage, the Gaussian process machine learning technique is integrated with finite element method as an online-offline prediction model to predict crack propagation with overloads under biaxial loading conditions; such a probabilistic prognosis model, with limited number of training examples, has shown increased accuracy over state-of-the-art techniques in predicting crack retardation behaviors induced by overloads. In the case of system level management, a monitoring framework built using a multivariate Gaussian model as basis is developed to evaluate the anomalous condition of commercial aircrafts. This method has been validated using commercial airline data and has shown high sensitivity to variations in aircraft dynamics and pilot operations. Moreover, this framework was also tested on simulated aircraft faults and its feasibility for real-time monitoring was demonstrated with sufficient computation efficiency.
This research is expected to serve as a practical addition to the existing literature while possessing the potential to be adopted in realistic engineering applications. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
|
6 |
Návrh palivového systému formulového vozidla / Formula Car Fuel System DesignRubíček, Pavel January 2015 (has links)
The fuel system is a very important part of the vehicle and the engine. The main function is to deliver the fuel- air mixture into the engine cylinder. This thesis describes the design of the Formula student car fuel system. The first part is an introduction to Formula Student competitions. The next section describes the options of the fuel systems structure and options for individual components. Those rules limit the possibilities for us FSAE that in the next chapter. The following parts are major chapters dealing with the actual design of the fuel system and analysis of selected components. The last part are chapters that deal with the production possibilities of parts and subsequent incorporation into the fuel system of the car.
|
7 |
Influence of long-term load on the behaviour of reinforced concrete beams strengthened with carbon fibre composite / Ilgalaikės apkrovos įtaka anglies pluoštu sustiprintų lenkiamųjų gelžbetoninių elementų elgsenaiDaugevičius, Mykolas 10 February 2011 (has links)
The influence of long-term load on the reinforced concrete beams strength-ened with a carbon fiber composite layer in the tensioned zone is considered in this dissertation. The evolution of deformations in the layers of the beams and the evolution of beam deflection is analyzed. The load carrying capacities after a long-term load action are also determined herein. The built-up-bars theory for calculation of deflections and the load carrying capacity after a long-term load action is presented in this dissertation. The thesis consists of an introduction, four main chapters, the results and conclusions and a list of used literature. The introduction describes the major objectives of the dissertation. It pre-sents the aims, the methods of research, the scientific novelty and defended pro-positions. The first chapter reviews application of carbon fiber composite polymer in strengthening structures. The influence of a long term load on concrete, polymer matrix, carbon fiber reinforced composite, strengthened concrete beams is also considered. In addition, it considers the calculation methods that evaluate the long term load influence. The second chapter is dedicated to applying of the built-up-bars theory in calculation of deflections and the load carrying capacity, including long term load action. Also, variation of concrete and carbon fiber composite contact stiff-ness is presented in this chapter. Chapter three presents the carried out experiments. It describes the experi-mental... [to full text] / Disertacijoje nagrinėjama lenkiamųjų gelžbetoninių sijų, tempiamojoje zo-noje sustiprintų anglies pluošto kompozitu, elgsena esant ilgalaikiam statinės apkrovos poveikiui. Disertacinio darbo tikslas – atlikti eksperimentinius tyrimus ir nustatyti ilgalaikės apkrovos poveikį sijos laikomajai galiai bei įlinkių vysty-muisi; apskaičiuoti sijos įlinkį pagal sudėtinių strypų teoriją įvertinant ilgalaikės statinės apkrovos poveikį bei betono ir anglies pluošto kompozito jungties stan-dumo pokytį dėl šlyties valkšnumo deformacijų prieaugio. Disertaciją sudaro: įvadas, keturi pagrindiniai skyriai, rezultatų apibendri-nimas ir išvados, naudotos literatūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas. Įvadiniame skyriuje nagrinėjama tiriamoji problema ir darbo aktualumas, nurodytas tyrimų objektas, suformuluoti darbo tikslai ir uždaviniai, pateikta ty-rimų metodika, aptarta darbo svarba ir praktinė rezultatų reikšmė, pristatyti gi-namieji teiginiai. Pirmajame skyriuje atlikta literatūros apžvalga. Čia nagrinėjamas ilgalaikės apkrovos ir aplinkos poveikis anglies pluošto kompozitui, kompozito ir betono jungčiai bei gelžbetoninių sijų elgsenai. Pateikiami sustiprintų sijų elgsenos eks-perimentinių tyrimų, veikiant trumpalaike ir ilgalaike apkrova, rezultatai. Apta-riamos skaičiavimo metodikos, vertinančios ilgalaikį apkrovos poveikį. Antrajame skyriuje pateikiama skaičiavimo metodika, grindžiama sudėtinių strypų teorija. Skaičiavimo metodika skirta sijų, sustiprintų anglies... [toliau žr. visą tekstą]
|
8 |
Mineral-impregnated carbon fiber (MCF) reinforcements based on geopolymerZhao, Jitong 29 February 2024 (has links)
Carbon concrete composites (C³) hold promise as a material class for constructing lightweight, durable, and sustainable structures. State-of-the-art carbon fiber-reinforced polymer (CFRP) reinforcement comprises infinite multifilament bundles embedded in a polymeric matrix, en-suring adequate load transfer and process robustness, yet it undergoes considerable degrada-tion under elevated temperatures or harsh service conditions. Instead, the success of mineral-impregnated carbon fibers (MCFs) stems from their structural flexibility, inherent heat re-sistance, and outstanding compatibility with cementitious substrates. Geopolymers (GPs) have recently emerged as a viable coating alternative due to a unique combination of many advantages, e.g., sustainability, source diversity, long early-age processing time, synthesis by controlled low-temperature activation and a wide range of temperature resistance.
This work aims to develop and test fast-setting MCF composites and associated processing technologies, which hold significant importance for industrial applications and structural fire safety. As a result of the novelty of mineral impregnation technology, challenges regarding the process chain and mixture must be mastered to explore the full material potential before the technology is translated to key markets. The introductory chapter offers a comprehensive review of fiber-reinforced geopolymer (FRG) systems in response to temperature influences. The concept development is grounded in a systematic investigation of several interrelated, critical processing aspects of GP impregnation, focusing on processing quality and strength evolution. This investigation is conducted alongside an automated and continuous impregna-tion technology.
Findings from numerous experiments revealed that targeted thermal curing profoundly influ-enced the mechanical properties and microstructure of the GP matrices and resulting MCFs. Hereby, rapid setting and high early-age strength of MCF, comparable to conventional CFRPs, were achieved within the first several hours of heat curing. The ability of aluminosili-cate particles to penetrate a dense fiber bundle was studied by applying fly ash (FA) with a systematically varied particle size distribution. Thereby, the max. particle size close to the same range of diameter of individual filament proved to be the most efficient, improving both the mechanical performance of MCF and its bond to concrete. Furthermore, an experimental campaign on the role of fiber sizing agents in processing quality and final composite perfor-mance was conducted. The respective impregnation quality and quantity were comprehen-sively explained by varied yarn spreading behavior and wettability, resulting in apparent dif-ferences in filament-matrix morphology and mechanical performance of MCF. To achieve high shape stability, packing density, and tailor-bond characteristics, the effect of surface pro-filing and prototypical winding technology on MCF was investigated.
Finally, the bond quality of the MCF was validated through yarn pull-out tests in GP concrete at elevated temperatures and compared with available CFRP. These tests generated parame-ters related to bond behavior, which were then used to construct a three-dimensional numeri-cal model. Based on proper parametric calibrations, good agreement between numerical and experimental characterizations was achieved to predict the material's performance for future applications.:1 Introduction 1
1.1 Motivation 1
1.2 Objectives of the thesis 5
1.3 Thesis structure 7
2 Publications 11
2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12
2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37
2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50
2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66
2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80
2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94
3 Summary and Outlook 108
3.1 Summary of the research work 108
3.2 Outlook 113
References 119
Appendix A IV
Appendix B VI / Der Verbundwerkstoff Carbonbeton ist eine vielversprechende Materialklasse für den Bau von leichtgewichtigen, langlebigen und nachhaltigen Strukturen. Hochmoderne Bewehrungen aus Carbonfaser-verstärkte Kunststoffen (CFK) werden durch die Imprägnierung von Endlos-faserbündeln mit einer Polymermatrix hergestellt, was ausreichende Lastübertragungskapazi-tät und Prozessrobustheit gewährleistet, und jedoch durch hohe Temperaturen oder raue Um-gebungen erheblich zerstört wird. Stattdessen resultiert der Erfolg mineralimprägnierter Car-bonfasern (MCFs) aus ihrer strukturellen Flexibilität, inhärenten Wärmebeständigkeit und hervorragenden Kompatibilität mit zementären Substraten. Geopolymere (GPs) haben sich kürzlich als praktikable Beschichtungsalternative herausgestellt, aufgrund einer einzigartigen Kombination vieler Vorteile, wie Nachhaltigkeit, Quellenvielfalt, ausreichendes Verarbei-tungsfenster, Synthese durch kontrollierte thermische Aktivierung bei niedrigen Temperatu-ren und Hitzebeständigkeit.
Die vorliegende Arbeit zielt auf die Entwicklung und Erprobung schnell abbindender MCF-Verbundwerkstoffe und zugehöriger Verarbeitungstechnologien ab, was für industrielle An-wendungen und den baulichen Brandschutz von großer Bedeutung ist. Aufgrund der Neuar-tigkeit der mineralischen Imprägnierungstechnologie müssen Herausforderungen in Bezug auf die Prozesskette und Mischung gemeistert werden, um das volle Materialpotenzial zu erkunden, bevor die Technologie auf Schlüsselmärkte übertragen wird. Dementsprechend gibt das einleitende Kapitel einen umfassenden Überblick über faserverstärkte Geopolymer (FRG)-Systeme unter Temperatureinwirkung. Das Entwicklungskonzept baut auf einer sy-stematischen Untersuchung mehrerer zusammenhängender, wichtiger Verarbeitungsaspekte der GP-Imprägnierung in Bezug auf Verarbeitungsqualität und Festigkeitsentwicklung von der Mikro- bis zur Makroskala und in Verbindung mit einer automatisierten und kontinuierli-chen Fertigungstechnologie auf.
Ergebnisse zahlreicher Experimente zeigten, dass gezielte Wärmehärtung die mechanischen Eigenschaften und Mikrostruktur der GP-Matrizen und resultierenden MCFs nachhaltig be-einflußt. Hierdurch wurde eine schnelle Aushärtung und hohe Festigkeit von MCF innerhalb der ersten Stunden der Wärmebehandlung erreicht, und zwar vergleichbar mit konventionel-len CFRPs. Die Eindringfähigkeit von Aluminosilikatpartikeln in ein dichtes Faserbündel wurde durch die Anwendung von Flugasche (FA) mit systematisch variierter Partikelgrößen-verteilung untersucht. Dabei erwies sich die maximale Partikelgröße, die nahe dem Durch-messer einzelner Filamente liegt, als am effizientesten. Sie verbesserte sowohl die mechani-sche Leistung von MCF als auch seine Bindung an Beton. Darüber hinaus wurde eine expe-rimentelle Kampagne zur Rolle der Faserschlichte auf die Verarbeitungsqualität und die end-gültige Verbundleistung durchgeführt. Die jeweilige Imprägnierungsqualität wurde umfas-send durch ein unterschiedliches Spreizungsverhalten und Benetzbarkeit des Garns erklärt, was zu deutlichen Unterschieden in der Filament-Matrix-Verteilung und mechanischen Ei-genschaften von MCF führte. Zur Verbesserung der Formstabilität, Packungsdichte und ge-zielten Abstimmung der Verbundeigenschaften im Beton wurde der Effekt der Oberflächen-profilierung und prototypischen Wickeltechnik auf MCF untersucht.
Schließlich wurde die Verbundqualität der MCF durch den Garnauszugversuch in GP-Beton bei erhöhten Temperaturen validiert und mit einer verfügbaren CFK-Bewehrung verglichen. Diese Tests generierten auf das Verbundverhalten bezogene Parameter, die dann zur Formu-lierung eines dreidimensionalen numerischen Modells verwendet wurden. Durch angemesse-ne parametrische Kalibrierungen wurde eine gute Übereinstimmung zwischen numerischen und experimentellen Charakterisierungen erreicht, um die Leistung des Materials für zukünf-tige Anwendungen vorherzusagen.:1 Introduction 1
1.1 Motivation 1
1.2 Objectives of the thesis 5
1.3 Thesis structure 7
2 Publications 11
2.1 A review of the role of elevated temperatures on the mechanical properties of fiber-reinforced geopolymer (FRG) composites 12
2.2 Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymers 37
2.3 Mineral-impregnated carbon-fiber (MCF) composites made with differently sized fly-ash geopolymers for durable light weight and high temperature applications. 50
2.4 Role of sizing agent on the microstructure morphology and mechanical properties of mineral-impregnated carbon-fiber (MCF) reinforcement made with geopolymers 66
2.5 Effect of surface profiling on the mechanical properties and bond behaviour of mineral-impregnated, carbon-fibre (MCF) reinforcement based on geopolymer 80
2.6 Temperature-dependent pull-out behavior of geopolymer concrete reinforced with polymer- or mineral-impregnated carbon fiber composites: an experimental and numerical study. 94
3 Summary and Outlook 108
3.1 Summary of the research work 108
3.2 Outlook 113
References 119
Appendix A IV
Appendix B VI
|
9 |
Development and testing of fast curing, mineral-impregnated carbon fiber (MCF) reinforcements based on metakaolin-made geopolymersZhao, Jitong, Liebscher, Marco, Michel, Albert, Junger, Dominik, Trindade, Ana Carolina Constâncio, Silva, Fláviode Andrade, Mechtcherine, Viktor 28 November 2022 (has links)
Mineralisch getränkte Carbonfasern (MCF) stellen eine vielversprechende Alternative zu herkömmlichen Stahlbewehrung in Beton dar. Für eine effiziente industrielle Herstellung von MCF muss eine ausreichende Verarbeitungszeit für die Imprägniersuspension gewährleistet sein. In der vorliegenden Untersuchung wurde zu diesem Zweck ein aus Metakaolin hergestelltes Geopolymer (GP) entwickelt und getestet. Die Tränkung von Carbonfasergarnen wurde kontinuierlich und automatisiert durchgeführt. Anschließend wurden die MCF bei 75 °C wärmebehandelt, um die Reaktionsprozesse zu beschleunigen. Die mechanische Leistung von MCF nahm im Verlauf des Aushärtungsprozesses von 2 auf 8 Stunden allmählich zu, was auf das größere Ausmaß der Geopolymerisation zurückzuführen ist. Bei einer solchen verlängerten Aushärtung zeigten thermogravimetrische und mikroskopische Analysen zwar eine stärkere 'reagierte' Mikrostruktur, aber auch einen höheren Gehalt an Hohlräumen. Nach 8-stündigen Erhitzen erreichten die Zugfestigkeit und der Young-Modul von MCF 2960 MPa bzw. 259 GPa, bezogen auf die Garnquerschnittsfläche.:Abstract
Schlagwörter
1. Einleitung
2. Experimentelles Programm
2.1. Materialien
2.2. Herstellung von MCF
2.3. Testen der Geopolymermatrix
2.4. Mechanische Prüfung von MCF
2.5. Morphologische Charakterisierung
3. Ergebnisse und Diskussion
3.1. Charakterisierung der Geopolymermatrix
3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C.
3.3. Chemische und morphologische Analyse
4. Schlussfolgerung
Erklärung des konkurrierenden Interesses
Literaturen / Mineral-impregnated, carbon fiber composites (MCF) are a promising alternative to conventional concrete reinforcements. For the efficient industrial production of MCF, sufficient processing time for the impregnation suspension must be ensured. In the present investigation, a metakaolin-made geopolymer (GP) has been developed and tested for this purpose. The impregnation of carbon-fiber yarns was performed continuously and automated. Subsequently, the MCF were heat-treated at 75 °C to accelerate the reaction processes. The mechanical performance of MCF gradually increased in the advancement of the curing process from 2 to 8 h, which is attributed to the greater extent of geopolymerization. In such extended curing, thermogravimetric and microscopic analysis showed indeed a more “reacted” microstructure but also a higher content of voids. After heating for 8 h, the tensile strength and Young's modulus of MCF reached 2960 MPa and 259 GPa, respectively, when related to the yarn cross-sectional area.:Abstract
Schlagwörter
1. Einleitung
2. Experimentelles Programm
2.1. Materialien
2.2. Herstellung von MCF
2.3. Testen der Geopolymermatrix
2.4. Mechanische Prüfung von MCF
2.5. Morphologische Charakterisierung
3. Ergebnisse und Diskussion
3.1. Charakterisierung der Geopolymermatrix
3.2. Hergestellte MCF mit Geopolymer und Wärmebehandlung bei 75 °C.
3.3. Chemische und morphologische Analyse
4. Schlussfolgerung
Erklärung des konkurrierenden Interesses
Literaturen
|
Page generated in 0.0726 seconds