1 |
CARBON FORESTRY: PURSUING CLIMATE CHANGE MITIGATION AND POVERTY ALLEVIATION THROUGH MARKET-BASED FOREST CARBON SCHEMES IN CHIAPAS, MEXICOOtto, Jonathan 01 January 2014 (has links)
Forest carbon projects seek to alleviate rural poverty and mitigate global climate change by facilitating the flow of capital from actors looking to offset CO2 emissions to land managers willing to engage in offset-oriented reforestation, afforestation, and forest preservation activities. In Mexico, forest carbon schemes have been pursued within the country’s national Payment for Ecosystem Services (PES) program, and through REDD+ pilot projects and separate voluntary initiatives. In this dissertation, I explore one voluntary project, Scolel’ Te, which is managed by the non-governmental organization (NGO), AMBIO. Focusing on the case of Scolel’ Te, I show how forest carbon projects undermine social relations in ways that weaken participating communities and threaten project success. First, I examine how carbon forestry market integration undermines social relations by pushing risk on participant labor and encouraging the establishment of disenfranchising labor arrangements. Second, I analyze how farmer participation in Scolel’ Te undermines social relations within broader community settings. Such effects, I argue, are only visible when analyzing the social ramifications of carbon forestry within the context of intra-community social relations. Finally, drawing on labor studies, I critically re- assess the role of participatory methods in carbon forestry, suggesting that they undermine the social relations of production between farmers and project managers, thereby threatening project success. This analysis demonstrates how shifting market dynamics, historical factors, and labor processes converge in the context of carbon forestry, and underscores the implications of such work for participating farmers and carbon forestry more broadly.
|
2 |
Integrating management for old-growth characteristics with enhanced carbon storage of northern hardwood-conifer forestsFord, Sarah Eliot 01 January 2016 (has links)
Forest management practices emphasizing stand structural complexity are of interest across the northern forest region of the United States because of their potential to enhance carbon storage. Our research is nested within a long-term study evaluating how silvicultural treatments promoting late-successional forest characteristics affect aboveground biomass development in northern hardwood forests. We are testing the hypothesis that biomass development (carbon storage) will be greater in structural complexity enhancement (SCE) treatments when compared to conventional uneven-aged treatments. SCE treatments were compared against selection systems (single-tree and group) modified to retain elevated structure. Manipulations and controls were replicated across 2-hectare treatment units at two study areas in Vermont, USA. Data on aboveground biomass pools (live trees and coarse woody material, standing dead and downed wood) were collected pre- and post-harvest then again a decade later in 2013. Species group-specific allometric equations were used to estimate live and standing dead biomass and downed log biomass was estimated volumetrically. We used Forest Vegetation Simulator to project "no-treatment" baselines specific to treatment units, allowing measured carbon responses to be normalized relative to differences in site-specific characteristics and pre-treatment conditions.
Results indicate that 10 years post-harvest biomass development and carbon storage were greatest in SCE treatments compared to conventional treatments, with the greatest increases in coarse woody material (CWM) pools. Structural complexity enhancement treatments contained 12.67 Mg ha-1 carbon in CWM compared to 6.62 Mg ha-1 in conventional treatments and 8.84 Mg ha-1 in areas with no treatment. Percentage differences between post-harvest carbon and baseline values indicate that carbon pool values in SCE treatments returned closest to pre-harvest or untreated levels over conventional treatments. Total carbon storage in SCE aboveground pools was 15.90% below baseline conditions compared to 44.94% less in conventionally treated areas (P = 0.006). Results from CART models indicated treatment as the strongest predictor of aboveground C storage followed by site-specific variables, suggesting a strong influence of both on carbon pools. Structural enhancement treatments have potential to increase carbon storage in managed northern hardwoods based on these results. They offer an alternative for sustainable management integrating carbon, associated climate change mitigation benefits, and late-successional forest structure.
|
3 |
Understanding aquatic carbon loss from upland catchments in south west Scotland during land use change from commercial forest to wind farmvan Niekerk, Melanie January 2012 (has links)
High concentrations and fluxes of dissolved organic carbon (DOC) in fluvial systems are associated with the dark brown water colour familiar in many upland, peat-dominated areas and may indicate a depletion of the terrestrial carbon store. The removal of this colour can also be problematic and expensive for water companies as well as affecting the ecological functioning of the water body through factors such as reduced light penetration through the water column. Disturbance resulting from activities such as land use change can also enhance the loss of carbon and this may manifest itself in elevated concentrations and fluxes of DOC from aquatic systems. This thesis describes and explains patterns of change in DOC quantity and quality from the Crosswater, Crosswater of Luce and Tig catchments draining Arecleoch Forest, a peatland in south Ayrshire, Scotland, from 2008 to 2010. This time period incorporates the installation of a 60-turbine wind farm built and operated by Scottish Power Renewables (SPR). Water samples were collected from Arecleoch at different spatial scales ranging from catchments to soil pore water and temporal scales ranging from daily to seasonally. Concentrations of DOC were measured and fluxes estimated at the catchment scale. DOC concentrations from all three catchments exhibited the well-established seasonal pattern with maxima in late August/early September and minima seen in February/March. The Tig catchment experienced the greatest burden of disturbance from the wind farm development and returned the highest DOC concentrations and fluxes. The Crosswater catchment, used as a control site due to its isolation from wind farm activities, had higher DOC concentrations than the Crosswater of Luce throughout the monitoring period possibly due to a greater proportion of forest cover. ii DOC flux ranged from 35.0 g C m-2 yr-1 from the Crosswater of Luce catchment in 2008 to 55.0 g C m-2 yr-1 from the Crosswater in 2009. The Tig catchment was not monitored for the whole period but returned the highest DOC fluxes of the three catchments between January and June 2010 (15.7 g C m-2). These values are considered high for UK peatlands. It is possible to make a tentative estimate of an extra 12 g C m-2 being exported from the Crosswater of Luce in 2009 that may have been a result of wind farm and/or forestry activities in the catchment. At the sub-catchment scale, “hot spots” of high DOC concentrations (up to 113.4 mg L-1) were found during the final survey of headwater streams inside the development area of the wind farm site during construction in August 2010. Further surveys are recommended to assess whether DOC concentrations have decreased since completion of the wind farm. Daily water samples were collected upstream and downstream of turbine 33 during the excavation of the turbine base. DOC concentrations were higher downstream before work began on the turbine base and although the gap between upstream and downstream DOC concentrations increased over the monitoring period, statistical comparisons of these differences before and after the start of excavation work were not significant at the 95 % confidence level. Challenges arose from the practicability of conducting robust research on a construction site and novel approaches to monitoring DOC were developed. Activity scores were used to quantify the effect of peatland disturbance on DOC concentrations at the catchment scale. The results suggest that this approach may have merit but requires comprehensive site records from the developer. The non-linear nature of the individual wind farm development and forestry activities made it impractical to disentangle the impact of each, particularly for forest harvesting. iii Activity scores could, together with other information gathered from site records, be useful to developers as an indicator of the most likely periods for peat disturbance. Knowledge of the differing disturbance potential of the various activities could also provide useful information to feed into the carbon payback calculator. DOC quality was explored using ultraviolet (UV) absorbance, specific UV absorbance (SUVA) and E4/E6 ratios. The latter metric identified changes in the composition of DOC related to disturbance with water samples from areas draining land subject to disturbance having lower E4/E6 ratios indicating a greater degree of humification of the DOC. This research provides one of only three studies to investigate concentrations and fluxes of DOC in water courses draining land subject to disturbance relating to wind farm construction. It is the only study that incorporates a period of time prior to work beginning and takes in the whole of the development phase. In this respect it provides a valuable addition to our understanding of the way in which peatlands respond to land use change and may provide useful tools to assist developers in minimising the impact of their activities on these valuable carbon stores.
|
Page generated in 0.0488 seconds