• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 53
  • 42
  • 32
  • 14
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 513
  • 513
  • 91
  • 71
  • 70
  • 68
  • 63
  • 53
  • 52
  • 49
  • 45
  • 44
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Synthesis of Boron-Containing Carbon Nanotubes Catalyzed by Cu/£^- Al2O3

Chen, Yun-chu 07 September 2011 (has links)
Boron-doped carbon nanotubes are predicted to behave as semiconductors over a large range of diameters and chiralities and might thus constitute a suitable class of material for nanoelectronics technology. Boron-doped CNTs were reported as by-products when BC2N nanotubes were prepared by an arc-discharge method. The potential doping of CNTs with different kinds of atoms might provide a mechanism for controlling their electronic properties. We have synthesized boron-doped carbon nanotubes (CNTs) directly on copper catalyst by decomposition of B(OCH3)3 in chemical vapor deposition method. The results were characterized and analyzed by scanning electron microscopy (SEM), Raman, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), solid-state NMR and TGA.
92

Nanolithographic control of carbon nanotube synthesis

Huitink, David Ryan 15 May 2009 (has links)
A method offering precise control over the synthesis conditions to obtain carbon nanotube (CNT) samples of a single chirality (metallic or semi-conducting) is presented. Using this nanolithographic method of catalyst deposition, the location of CNT growth is also precisely defined. This technique obviates three significant hurdles that are preventing the exploitation of CNT in micro- and nano-devices. Microelectronic applications (e.g., interconnects, CNT gates, etc.) require precisely defined locations and spatial density, as well as precisely defined chirality for the synthesized CNT. Conventional CVD synthesis techniques typically yield a mixture of CNT (semi-conducting and metallic types) that grow at random locations on a substrate in high number density, which leads to extreme difficulty in application integration. Dip Pen Nanolithography (DPN) techniques were used to deposit the catalysts at precisely defined locations on a substrate and to precisely control the catalyst composition as well as the size of the patterned catalyst. After deposition of catalysts, a low temperature Chemical Vapor Deposition (CVD) process at atmospheric pressure was used to synthesize CNT. Various types of catalysts (Ni, Co, Fe, Pd, Pt, and Rh) were deposited in the form of metal salt solutions or nano-particle solutions. Various characterization studies before and after CVD synthesis of CNT at the location of the deposited catalysts showed that the CNT were of a single chirality (metallic or semiconducting) as well as a single diameter (with a very narrow range of variability). Additionally, X-ray photoelectron spectroscopy (XPS) was used to characterize the deposited samples before and after the CVD, as was lateral force microscopy (LFM) for determination of the successful deposition of the catalyst material immediately after DPN as well as following the CVD synthesis of the samples. The diameter of the CNT determines the chirality. The diameter of the CNT measured by TEM was found to be consistent with the chirality measurements obtained from Raman Spectroscopy for the different samples. Hence, the results showed that CNT samples of a single chirality can be obtained by this technique. The results show that the chirality of the synthesized CNT can be controlled by changing the synthesis conditions (e.g., size of the catalyst patterns, composition of the catalysts, temperature of CVD, gas flow rates, etc.).
93

Characterization of surfactant dispersed single wall nanotube - polystyrene matrix nanocomposite

Ayewah, Daniel Osagie, Oyinkuro 15 May 2009 (has links)
Carbon nanotubes (CNT) are a new form of carbon with exceptional electrical and mechanical properties. This makes them attractive as inclusions in nanocomposite materials with the potential to provide improvements in electrical and mechanical properties and allows for the creation of a new range of multifunctional materials. In this study single wall carbon nanotubes (SWCNT) were dispersed in polystyrene using a solution mixing method, with the aid of a surfactant. A good dispersion was achieved and the resulting nanocomposites were characterized for electrical conductivity and mechanical properties by 3 point flexural and fracture toughness tests. Results show a significant improvement in electrical properties with electrical percolation occurring between 0.1 and 0.2 wt%. A minor improvement was observed in the flexural modulus but the strength and fracture toughness values in the nanocomposites decreased relative to the neat material. Scanning electron microscopy (SEM) was performed to characterize the morphology and fracture surface of the specimens. The results of testing and microscopy show that the presence of the nanotubes has an adverse effect on the crazing mechanism in Polystyrene (PS) resulting in a deterioration of the mechanical properties that depend on this mechanism.
94

Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites

Gaddamanugu, Dhatri 2009 May 1900 (has links)
Modeling of single-walled carbon nanotubes, multi-walled nanotubes and nanotube reinforced polymer composites using both the Finite Element method and the Molecular Dynamic simulation technique is presented. Nanotubes subjected to mechanical loading have been analyzed. Elastic moduli and thermal coefficient of expansion are calculated and their variation with diameter and length is investigated. In particular, the nanotubes are modeled using 3D elastic beam finite elements with six degrees of freedom at each node. The difficulty in modeling multi walled nanotubes is the van der Waal's forces between adjacent layers which are geometrically non linear in nature. These forces are modeled using truss elements. The nanotube-polymer interface in a nano-composite is modeled on a similar basis. While performing the molecular dynamic simulations, the geometric optimization is performed initially to obtain the minimized configuration and then the desired temperature is attained by rescaling the velocities of carbon atoms in the nanotube. Results show that the Young's modulus increases with tube diameter in molecular mechanics whereas decreases in molecular dynamics since the inter-atomic potential due to chemical reactions between the atoms is taken into consideration in molecular dynamics unlike in molecular mechanics.
95

Computational Analysis of Thermo-Fluidic Characteristics of a Carbon Nano-Fin

Singh, Navdeep 2010 December 1900 (has links)
Miniaturization of electronic devices for enhancing their performance is associated with higher heat fluxes and cooling requirements. Surface modifi cation by texturing or coating is the most cost-effective approach to enhance the cooling of electronic devices. Experiments on carbon nanotube coated heater surfaces have shown heat transfer enhancement of 60 percent. In addition, silicon nanotubes etched on the silicon substrates have shown heat flux enhancement by as much as 120 percent. The heat flux augmentation is attributed to the combined effects of increase in the surface area due to the protruding nanotubes (nano- n eff ect), disruption of vapor lms and modi fication of the thermal/mass di ffusion boundary layers. Since the e ffects of disruption of vapor lms and modifi cation of the thermal/mass di ffusion boundary layers are similar in the above experiments, the difference in enhancement in heat transfer is the consequence of dissimilar nano- n eff ect. The thermal conductivity of carbon nanotubes is of the order of 6000 W/mK while that of silicon is 150 W/mK. However, in the experiments, carbon nanotubes have shown poor performance compared to silicon. This is the consequence of interfacial thermal resistance between the carbon nanotubes and the surrounding fluid since earlier studies have shown that there is comparatively smaller interface resistance to the heat flow from the silicon surface to the surrounding liquids. At the molecular level, atomic interactions of the coolant molecules with the solid substrate as well as their thermal-physical-chemical properties can play a vital role in the heat transfer from the nanotubes. Characterization of the e ffect of the molecular scale chemistry and structure can help to simulate the performance of a nano fin in diff erent kinds of coolants. So in this work to elucidate the eff ect of the molecular composition and structures on the interfacial thermal resistance, water, ethyl alcohol, 1-hexene, n-heptane and its isomers and chains are considered. Non equilibrium molecular dynamic simulations have been performed to compute the interfacial thermal resistance between the carbon nanotube and different coolants as well as to study the diff erent modes of heat transfer. The approach used in these simulations is based on the lumped capacitance method. This method is applicable due to the very high thermal conductivity of the carbon nanotubes, leading to orders of magnitude smaller temperature gradients within the nanotube than between the nanotube and the coolants. To perform the simulations, a single wall carbon nanotube (nano-fin) is placed at the center of the simulation domain surrounded by fluid molecules. The system is minimized and equilibrated to a certain reference temperature. Subsequently, the temperature of the nanotube is raised and the system is allowed to relax under constant energy. The heat transfer from the nano- fin to the surrounding fluid molecules is calculated as a function of time. The temperature decay rate of the nanotube is used to estimate the relaxation time constant and hence the e ffective thermal interfacial resistance between the nano-fi n and the fluid molecules. From the results it can be concluded that the interfacial thermal resistance depends upon the chemical composition, molecular structure, size of the polymer chains and the composition of their mixtures. By calculating the vibration spectra of the molecules of the fluids, it was observed that the heat transfer from the nanotube to the surrounding fluid occurs mutually via the coupling of the low frequency vibration modes.
96

Continuum-based Multiscale Computational Damage Modeling of Cementitous Composites

Kim, Sun-Myung 2010 May 1900 (has links)
Based on continuum damage mechanics (CDM), an isotropic and anisotropic damage model coupled with a novel plasticity model for plain concrete is proposed in this research. Two different damage evolution laws for both tension and compression are formulated for a more accurate prediction of the plain concrete behavior. In order to derive the constitutive equations, the strain equivalence hypothesis is adopted. The proposed constitutive model has been shown to satisfy the thermodynamics requirements, and detailed numerical algorithms are developed for the Finite Element implementation of the proposed model. Moreover, the numerical algorithm is coded using the user subroutine UMAT and then implemented in the commercial finite element analysis program Abaqus, and the overall performance of the proposed model is verified by comparing the model predictions to various experimental data on macroscopic level. Using the proposed coupled plasticity-damage constitutive model, the effect of the micromechanical properties of concrete, such as aggregate shape, distribution, and volume fraction, the ITZ thickness, and the strength of the ITZ and mortar matrix on the tensile behavior of concrete is investigated on 2-D and 3-D meso-scale. As a result of simulation, the tensile strength and thickness of the ITZ is the most important factor that control the global strength and behavior of concrete, and the aggregate shape and volume fraction has somewhat effect on the tensile behavior of concrete while the effect of the aggregate distribution is negligible. Furthermore, using the proposed constitutive model, the pull-out analysis of the single straight and curved CNT embedded in cement matrix is carried out. In consequence of the analysis, the interfacial fracture energy is the key parameter governing the CNT pull-out strength and ductility at bonding stage, and the Young's modulus of the CNT has also great effect on the pull-out behavior of the straight CNT. In case of the single curved CNT, while the ultimate pull-out force of the curved CNT at sliding stage is governed by the initial sliding force when preexisting normal force is relatively high, the ultimate pull-out force, when the preexisting normal force is not significant, is increased linearly proportional to the curvature and the Young's modulus of the CNT due to the additionally induced normal force by the bending stiffness of the curved CNT.
97

A study on the nano-composite material structures of Polyethylene/Carbon Nanotubes at different concentrations by Dissipative Particle Dynamics

Wang, Hung-hsiang 19 August 2009 (has links)
In this thesis, molecular dynamics and dissipative particle dynamics simulation methods are adopted to investigate the effects of volume fraction (1:1; 1:4; 1:6; 1:14; 1:20), repulsive interaction parameter (aij) and chain length on the microstructure of (5,5) carbon-nanotube (CNT)/polyethylene (PE) mixture. In order to obtain the information of microstructure for different simulation conditions, we used the radius of gyration and orientational order parameter to explore the polymer conformation. It is found that micro-structures will be very different when different repulsive interaction parameters and volume fractions are used.
98

Effect of dispersion of SWCNTs on the viscoelastic and final properties of epoxy based nanocomposites

Uzunpinar, Cihan. Auad, Maria Lujan. January 2010 (has links)
Thesis--Auburn University, 2010. / Abstract. Includes bibliographic references.
99

Highly structured nano-composite anodes for secondary lithium ion batteries

Evanoff, Kara 08 June 2015 (has links)
Interest in high performance portable energy devices for electronics and electric vehicles is the basis for a significant level of activity in battery research in recent history. Li-ion batteries are of particular interest due to their high energy density, decreasing cost, and adaptable form factor. A common goal of researchers is to develop new materials that will lower the cost and weight of Li-ion batteries while simultaneously improving the performance. There are several approaches to facilitate improved battery system-level performance including, but not limited to, the development of new material structures and/or chemistries, manufacturing techniques, and cell management. The performed research sought to enhance the understanding of structure-property relationships of carbon-containing composite anode materials in a Li-ion cell through extensive materials and anode performance characterization. The approach was to focus on the development of new electrode material designs to yield higher energy and power characteristics, as well as increased thermal and electrical conductivities or mechanical strength, using techniques that could be scaled for large volume manufacturing. Here, three different electrode architectures of nanomaterial composites were synthesized and characterized. Each electrode structure consisted of a carbon substrate that was conformally coated with a high Li capacity material. The dimensionality and design for each structure was unique, with each offering different advantages. The addition of an external coating to further increase the stability of high capacity materials was also investigated.
100

Carbon Nanotube Enhanced MALDI MS: Increasing Sensitivity Through Sample Concentration

Schumacher, Joshua 27 October 2010 (has links)
Matrix-assisted laser desorption/ionization (MALDI) is a technique used in mass spectrometry for the ionization of biomolecules. A matrix solution is mixed with the analyte molecules to be investigated, and then spotted onto a specialized MALDI plate. The solvents evaporate leaving only the re-crystallized matrix with analyte dispersed throughout the crystals. Sample ionization is accomplished with a laser in the MALDI instrument. The spot diameter of the target is usually several orders of magnitude larger than the diameter of the laser, making it necessary to perform multiple laser investigations to accurately evaluate the analyte in the target spot. Experiments were performed to utilize patterned areas of carbon nanotubes to provide sites for preferential crystallization of the liquid matrix/analyte solution, which led to lateral concentration for non-aqueous based matrices and produced a final dried matrix/analyte spot that was approximately the diameter of the laser spot at the point of investigation. This work shows the results of using aligned carbon nanotubes as the substrate for the matrix/analyte deposition and demonstrates an increase in signal to noise ratio and an improved detection capability of low analyte concentrations compared to the standard MALDI preparation technique.

Page generated in 0.0649 seconds