• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 10
  • 10
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Controlled interlayer between titanium carbon-nitride and aluminiumoxide

Munktell von Fieandt, Sara January 2011 (has links)
In the industry of metal cutting tools the conditions are extreme; the temperature can vary thousand degrees rapidly and the pressure can be tremendously high. To survive this kind of stress the cutting tool must be both hard and tough. In order to obtain these properties different coatings are used on a base of cemented carbide, WC-Co. Common coatings are hard ceramics like titanium nitride and titanium carbon-nitride with an outer layer of aluminium oxide. In this thesis the possibility of using titanium dioxide as an interlayer between titanium carbon-nitride and aluminium oxide to control the morphology and phase of aluminium oxide is investigated. Of the different aluminium oxide phases only the alpha-Al2O3 is stable. The titanium carbon-nitride coatings are made by CVD (chemical vapour deposition); also the alumina is deposited by CVD. The titanium dioxide was deposited by atomic layer deposition (ALD) which is a sequential CVD technique that allows a lower deposition temperature and better control of the film growth than CVD. The obtained thin films were analyzed using XRD, Raman spectroscopy, ESCA and SEM. To test the adhesion of the coatings the samples were sand blasted. A thin interlayer of titanium dioxide causes the aluminium oxide to grow as alpha-Al2O3, thinner TiO2 gave better adhesion.
12

An investigation of carbon nitride

Merchant, Alexander Raymond January 2001 (has links)
This thesis employs experimental and theoretical methods to characterise carbon nitride solids and proposes a generalstructural model for amorphous carbon nitride (a-C:N). It finds that a-C:N deposited by several methods is essentially identical, with similar bonding environments for carbon and nitrogen atoms. Using evidence from several techniques, the saturation of nitrogen in an sp2 carbon matrix is discussed. The experimental studies on a range of carbon nitride solids show no evidence for a crystalline form of carbon nitride. In addition to the experimental characterisation of a-C:N, ab initio molecular dynamics were used to investigate bonding and structure in carbon nitride. These simulations show that the most common form of nitrogen bonding was three-fold sites with a lone pair of electrons. Two-fold nitrogen sites were also found in agreement with experimental findings. An increase of nitrogen in a-C:N decreases the sp3-carbon fraction, but this is not localised on the nitrogen and the effect is most severe at high densities. A simulation of a low density/high nitrogen content network shows that the nitrogen saturation seen experimentally may be due to the formation of N2 dimers and C-N molecules which are easily driven out of the structure. The ab initio simulations also explore the nature of charged nitrogen and carbon sites in a-C:N. An analysis based on Wannier Function centres provided further information about the bonding and allowed for a detailed classification of these sites. The removal of electrons from the networks caused structural changes that could explain the two-state conductivity in ta-C:N memory devices. Finally, a theoretical study of the electron energy-loss near-edge structure (ELNES) calculated using multiple scattering theory is presented. The calculated ELNES of diamond, graphite and boron, silicon and carbon nitride structures compare well to experiment and supports the experimental finding that no crystalline carbon nitride had (or has) been produced. These ELNES calculations will however, provide a means of identifying crystalline beta-C3N4 should it be synthesised.
13

Modèles chimiques du nitrure de carbone graphitique : lien structure-propriétés / Structure-property relationships of graphitic carbon nitride molecular models

Zambon, Adrien 13 November 2015 (has links)
Le nitrure de carbone graphitique (gCN) est un semi-conducteur organique ayant dernièrement attiré l'attention par sa capacité à photocatalyser la séparation de l'eau. Il a récemment été montré que le gCN était un polymère basé sur le cycle heptazine C6N7, mais son arrangement tridimensionnel reste encore très peu connu. En effet, sa faible solubilité empêche l'utilisation des techniques de caractérisation classiques, et le terme gCN recouvre en réalité une large gamme de composés différents, selon les conditions de synthèse utilisées (choix du précurseur, température…). L'obtention de modèles moléculaires, de structures maîtrisées et bien définies, serait donc d'une grande aide dans la compréhension du lien structure-propriétés. Ceci est le but des travaux présentés dans ce manuscrit. La réactivité du chlorure de cyaméluryle, un précurseur monomérique, a été étudiée, et un protocole de substitution sélective quantitative par les amines secondaire aliphatique a été déterminé. L'utilisation de synthèses par déprotonation ou par activation thermique ont permis l'obtention de deux dimères et d'un trimère linéaire solubles. Les oligomères synthétisés ont été caractérisés par de nombreuses techniques (diffraction des rayons X, RMN, IR, absorption UV-vis, fluorescence, électrochimie), et les valeurs obtenues ont été corroborées à celle obtenues par DFT. De façon générale, une diminution des énergies des transitions électronique est observée quand la taille de chaîne augmente, et l'application de méthodes d'extrapolation suggère que les oligomères linéaires sont des bon modèle moléculaire du gCN. / Graphitic carbon nitride (gCN) is an organic semi-conductor which has lately attracted a lot of attention when its photocatalytic properties were highlighted for water splitting. It has been recently shown to be based on the heptazine core, but its three-dimensional structure remains elusive. This is first due to its poor solubility which prevents the use of classical characterization techniques, and second to the fact that changes in synthesis experimental conditions (precursors, temperature…) yield different materials. The synthesis of tailored and well-defined molecular models would therefore certainly be of great interest to better understand the structure-properties relationship of this material. This is the aim of the work presented in this manuscript. The reactivity of cyameluryl chloride, a monomeric precursor, has been studied, and a protocol for a quantitative selective substitution by aliphatic secondary amines has been determined. The use of deprotonation by a strong base or thermal treatment yielded two dimers and one linear trimer. The oligomers have been characterized by several technique (X-ray diffraction, NMR, IR, UV-vis absorption, emission, electrochemistry), and the obtained data were in close agreement to the ones observed in DFT. As a rule of thumb, a decrease of the electronic transition energies is observed for an increasing chain length. The application of extrapolation methods to the experimental data suggests that oligomers are relevant molecular models for gCN.
14

Nanoscale Heterogeneities in Visible Light Absorbing Photocatalysts: Connecting Structure to Functionality Through Electron Microscopy and Spectroscopy

January 2019 (has links)
abstract: Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various performance metrics, can be combined to elucidate functionality at multiple length scales. In this work, two promising visible light harvesting systems are studied in detail: Pt-functionalized graphitic carbon nitrides (g-CNxHys) and TiO2-supported CeO2-x composites. Electron energy-loss spectroscopy (EELS) is used to sense variations in the local concentration of amine moieties (defects believed to facilitate interfacial charge transfer) at the surface of a g-CNxHy flake. Using an aloof-beam configuration, spatial resolution is maximized while minimizing damage thus providing nanoscale vibrational fingerprints similar to infrared absorption spectra. Structural disorder in g-CNxHys is further studied using transmission electron microscopy at low electron fluence rates. In-plane structural fluctuations revealed variations in the local azimuthal orientation of the heptazine building blocks, allowing planar domain sizes to be related to the average polymer chain length. Furthermore, competing factors regulating photocatalytic performance in a series of Pt/g-CNxHys is elucidated. Increased polymer condensation in the g-CNxHy support enhances the rate of charge transfer to reactants owing to higher electronic mobility. However, active site densities are over 3x lower on the most condensed g-CNxHy which ultimately limits its H2 evolution rate (HER). Based on these findings, strategies to improve the cocatalyst configuration on intrinsically active supports are given. In TiO2/CeO2-x photocatalysts, the effect of the support particle size on the bulk/nanoscale properties and photocatalytic performance is investigated. Small anatase supports facilitate highly dispersed CeO2-x species, leading to increased visible light absorption and HERs resulting from a higher density of mixed metal oxide (MMO) interfaces with Ce3+ species. Using monochromated EELS, bandgap states associated with MMO interfaces are detected, revealing electronic transitions from 0.5 eV up to the bulk bandgap onset of anatase. Overall, the electron microscopy/spectroscopy techniques developed and applied herein sheds light onto the relevant defects and limiting processes operating within these photocatalyst systems thus suggesting rational design strategies. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
15

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
16

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
17

Development of Graphitic Carbon Nitride based Semiconductor Photocatalysts for Organic Pollutant Degradation

Wang, Jing January 2015 (has links)
As a potential solution to the global energy and environmental pollution, design and synthesis of artificial photocatalysts with high activities have attracted increasing scientific interests worldwide. In recent years, the graphitic carbon nitride (g-C3N4) has shown new possible applications in the photocatalytic field due to its unique properties. However, the photocatalytic efficiency of the pristine g-C3N4 is greatly limited by the high recombination rate of the photo-induced electron-hole pairs. In this thesis, the aim is to design and fabricate efficient g-C3N4 based photocatalysts with enhanced photocatalytic activities under a visible light irradiation. In order to achieve this goal, two strategies have been employed in the present thesis. First, the as-obtained g-C3N4 was used as the host material to construct staggered-aligned composite photocatalysts by selecting semiconductors with suitable band positions. By this method, three kinds of g-C3N4-based composite photocatalysts such as g-C3N4/ZnS nanocage, g-C3N4/m-Ag2Mo2O7 and g-C3N4/MIL-88A were successfully fabricated. Second, the microstructure of the g-C3N4 was modified by the H2O2-treatment at an elevated temperature and ambient pressure. In this study, the g-C3N4 was prepared by a simple pyrolysis of urea. As for all the as-synthesized phtocatalysts, the structures, morphologies and the optical properties were carefully characterized by the following techniques: XRD, SEM, TEM, FT-IR and DRS. Also, the band edge positions of m-Ag2Mo2O7 and MIL-88A were studied by the Mott-Schottky methods. Thereafter, the photocatalytic activities were evaluated by using a solution of rhodamine B (RhB) as a target pollutant for the photodegradation experiments performed under a visible light irradiation. The results showed that all the aforementioned g-C3N4-based photocatalysts exhibited enhanced photocatalytic activities in comparison with the pristine g-C3N4. For the case of the g-C3N4-based composite photocatalysts, the enhancement factor over the pristine g-C3N4 can achieve values ranging from 2.6 to 3.4. As for the H2O2-treated g-C3N4, the degradation rate constant can be 4.6 times higher than that of the pristine g-C3N4. To understand the key factors in new materials design, we also devote a lot of efforts to elucidate the basic mechanisms during the photocatalytic degradation of organic pollutant. Based on the results of the active species trapping (AST) experiments, the main active species in each photocatalytic system were determined. In the g-C3N4/m-Ag2Mo2O7 and the g-C3N4/MIL-88A system, three kinds of active species of ·O2-, h+ and ·OH were found to be involved in the photocatalytic reaction. Among them, the ·O2- and h+ were the main active species. In the g-C3N4/ZnS and H2O2-treated g-C3N4 photocatalytic systems, the main active species was determined as the ·O2-. The reaction pathways of these active species were also demonstrated by comparing the band edge positions with the potentials of the redox couple. In addition, the relationship between the active species and the photocatalytic behaviors of N-de-ethylation and conjugated structure cleavage were studied. Finally, possible mechanisms to explain the enhanced photocatalytic activities were proposed for each photocatalytic system. The results in this thesis clearly confirm that the photocatalytic activity of the g-C3N4 based photocatalyst can efficiently be enhanced by constructions of staggered-aligned composites and by modification of the microstructure of the g-C3N4. The enhanced photocatalytic performance can mainly be ascribed to the efficient separation of the photo-induced electron-hole pairs and the increase of the active sites for the photocatalytic reaction. / <p>QC 20150909</p>
18

LUMINESCENT SiCxNy THIN FILMS DEPOSITED BY ICP-CVD

Dunn, Kayne 10 1900 (has links)
<p>Please email me at kdunn@celccocontrols.com to confirm receipt of my thesis.</p> <p>Thanks,</p> <p>Kayne</p> / <p>In current microelectronic interconnect technology, significant delay is incurred due to capacitances in the intermediate and global interconnect layers. To avoid capacitive effects optical interconnects can be used; however conventional technologies are expensive to manufacture. One method to address these issues is to make use of quantum confinement effects and states lying within the bandgap of the material to enhance luminescence in a CMOS compatible silicon based system. Thin SiCxNy films appear to be suitable to work as luminescent silicon based films due to their lower direct bandgap and chemical stability but have not yet been studied in great detail.</p> <p>This thesis is an exploratory work aiming to assess the suitability of SiCxNy films for the above applications and to identify future research areas. The films analyzed in this thesis were manufactured on the inductively coupled plasma-chemical vapour deposition reactor (ICP-CVD) at McMaster University. The ICP-CVD produces films of high uniformity by using a remote RF plasma and an arrangement of high vacuum pumps to attain a vacuum on the order of 10-7Torr.</p> <p>Several experimental techniques have been used to analyse the films. The complex index of refraction has been determined through the use of ellipsometry giving results typical of that of a-SiNx:H. The photoluminescence spectroscopy results show a large broad emission peak with at least one shoulder at higher energies. The precise luminescence mechanism(s) could not be identified though a strong relationship with the bonding state of nitrogen has been found. The composition and structure of the films, as determined through ion beam measurements, infrared absorption measurements, and transmission electron microscopy measurements demonstrate the formation of a two phase structure consisting of carbon rich clusters surrounded by a mostly silicon nitride matrix. These carbon rich regions have some graphitic character and act to dampen the luminescence.</p> / Master of Applied Science (MASc)
19

Fullerene-like CNx and CPx Thin Films; Synthesis, Modeling, and Applications

Furlan, Andrej January 2009 (has links)
This Thesis concerns the development of fullerene-like (FL) carbon nitride (CNx) thin films and the discovery of phosphorus-carbide (CPx) compounds. The work dedicated to CPx include first-principles theoretical simulations of the growth and properties of FL-CPx structures. I have employed DC magnetron sputtering methods to synthesize both CNx and CPx thin films. The deposition conditions for CPx films were chosen on the basis of the theoretical results as well as from the experience from the deposition of FL-CNx thin films. The characterization of the CPx films is divided into three main directions: structural characterization by transmission electron microscopyand scanning electron microscopy, analysis of the amount of elements and chemical bonds presentin the structure by X-ray photoelectron spectroscopy and Auger spectroscopy, and mechanicalproperty analysis by nanoindentation. The CPx films exhibit a short range orderedstructure with FL characteristics for substrate temperature of 300 °C and for a phosphorus content of 10-15 at.%, which isconsistent with the theoretical findings. These films also displayed the best mechanical properties in terms of hardness and resiliency, which are better than those of the corresponding FL-CNx films. For the FL-CNx thin film material, I find that the surface water adsorption is lower compared to commercial computer hard disk top coatings. Following that line the dangling bonds in FL-CNx coatings have been investigated  by electron spin resonance (ESR). The absence of ESR signal for FL-CNx indicates very low density of dangling bonds in the material, which explains the low water adsorption tendency. The potential for using highly elastic FL-CNx coatings in an automotive valve-train environment has also been investigated. CNx coatings of different nitrogen content were investigated using microscopy, wear testing, nanoindentation testing, and in an experimental cam-tappet testing rig. The FL-CNx coating with the higher value of hardness/elastic modulus showed greater durability in cam-tappet wear testing.
20

Estudo do mecanismo de deposição de filmes finos de nitreto de carbono preparados com o sistema de deposição assistida por feixe de íons / Study on the deposition mechanism of thin carbon nitride films prepared with ion beam assisted deposition

Wilmer Alexe Sucasaire Mamani 31 August 2007 (has links)
Filmes finos de CNx foram depositados em temperatura ambiente, 350, 400, 500oC, por deposição a vapor de carbono sobre os substratos de Si(100) ou Si(111) com irradiação simultânea por íons derivado de gás N2 ou de mistura gasosa Ar-N2. A energia de íons variou de 150 a 600 eV e a razão de chegada, R(I/A), definida pela razão do fluxo de íons de nitrogênio incidentes relativa ao fluxo de átomos de carbono transportados ao substrato, foi de 1,0-2,5. A pressão de gás na câmara de vácuo foi mantida a 1,6 ×10-2 Pa durante o processo de deposição. A taxa de deposição dos filmes foi governada pelo sputtering químico. O rendimento de sputtering químico por íons de nitrogênio foi praticamente independente da energia de íons utilizada, enquanto que o rendimento de sputtering químico por íons de Ar e nitrogênio foi dependente da energia de íons devido ao efeito multiplicativo dos íons. Os espectros Raman medidos mostraram dois picos em torno de 1350 e 1560 cm-1, chamados do pico D e do G, respectivamente, e foram analisados em termos de: posição e largura do pico G, e razão das intensidades ID/IG. Os comportamentos destes parâmetros obtidos em função de R(I/A) foram explicados razoavelmente através do modelo de três estágios, sugerido por Ferrari et al., levando em consideração uma transição da fase característica de grafite a de fulereno, na qual a incorporação suficiente de nitrogênio em camadas grafíticas promove a formaao de anéis pentagonais que pode induzir o enrugamento em camadas, facilitando ligaoes entre as camadas através de átomos de carbono hibridizados de sp3. Um indício da ocorrência desta transição pode ser visto nos difratogramas de raios X dos filmes correspondentes. Neste contexto, os espectros Raman e de XPS dos filmes de CNx depositados previamente com o método RF magnetron sputtering reativo foram analisados e explicados consistentemente, levando-se em consideração a concentração de nitrogênio nos filmes. / Thin CNx films were deposited at room temperature, 350, 400, 500oC, by carbon vapor deposition on Si(100) or Si(111) substrates with simultaneous irradiation by íons derived from N2 gas or from a gas mixture of Ar-N2. The ion energy varied from 150 to 600 eV and the arrival rate ratio, R(I/A), defined as the ratio of the flux of incident nitrogen ions relative to flux of carbon atoms transported to the substrate, was in the range of 1.0-2.5. The gas pressure in the vacuum chamber was maintained at 1.6 × 10-2 Pa during the deposition. The deposition rate of the films was governed by chemical sputtering. The chemical sputtering field by nitrogen ions was practically independent of the ion energy used, while the chemical sputtering field by Ar and nitrogen ions was dependent on it due to the multiplicative effect of the ions. Raman spectra measured showed two peaks around 1350 and 1560 cm-1, called D and G peaks, respectively, and were analyzed in terms of: the G peak position and width, and the peak intensity ratio ID/IG. The behaviors of these parameters as a function of R(I/A) were explained reasonably through the three-stage model, suggested by Ferrari et al., taking into account a transition from a graphitelike phase to a fullerenlike phase, in which a sufficient incorporation of nitrogen into graphitic planes promotes a formation of pentagonal rings which can induce buckling of graphitic planes, facilitating cross-linking between the planes through sp3-hybridized carbon atoms. Evidence for this transition could be seen in X-ray diffratograms of the corresponding films. In this context, Raman and XPS spectra of CNx films previously deposited with the reactive RF magnetron sputtering method were analyzed and explained consistently, considering the nitrogen concentration in the films.

Page generated in 0.041 seconds