Spelling suggestions: "subject:"carbondioxide"" "subject:"carbonvdioxide""
331 |
Assessment of Reservoir Quality and Potential Impact of Sequestered Carbon Dioxide in Diverse Lithological Reservoir Units, South Central, Mississippi, USADegny, Assonman D 11 May 2013 (has links)
This study was designed to understand the possible impact of carbon dioxide on different reservoir rocks in south-central Mississippi. Eight samples, including six from the Heidelberg field (Mississippi), were exposed to carbon dioxide under simulated subsurface conditions of elevated temperature and pressure and then analyzed using thin section petrography, scanning electron microscopy, X-ray diffraction, and focused ion beam-SEM. Three of the eight samples showed dissolution in calcite and corrosion in smectite. SEM and EDS analysis of treated sample 5 (Se-5/shaly-sandtsone) and sample 8 (S-8/dolomitic-limestone) revealed newly precipitated lath- and fibrous-like crystals composed of sulfur (S), oxygen (O), and calcium (Ca), thus interpreted as gypsum. Three-dimensional analysis using FIB of dolomitic limestone samples (Smackover Formation) revealed that gypsum crystals fill fracture porosity. This study significantly contributes to the understanding of carbon dioxide impact on reservoir rock and promotes better management of natural gas resources.
|
332 |
Investigation of Reactions between Glauconite and Carbon Dioxide, with Implications for Carbon SequestrationNguyen, Van Anh 10 August 2018 (has links)
The objective of this study was to develop a protocol to test the reactivity of glauconite, a Fe/Mg bearing aluminosilicate mineral, in carbon storage. A selected glauconite-rich sample from the Cambrian Riley Formation of Central Texas was used containing glauconite 38 wt%, quartz 58 wt%, and calcite 4 wt%. Ten experiments were conducted using two techniques where total pressure was: 1) controlled by delivering CO2 to a high-pressure apparatus; 2) kept at saturated vapor level in autoclaves. The treated glauconite samples were analyzed with Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (SEM), and X-ray Diffraction techniques (XRD). Although the reaction between glauconite and CO2 was not visible, calcite crystallized in solution when its pH exceeded the value of 6.88. The research provides a foundation to develop further investigations of rock reactions under CO2 saturated conditions.
|
333 |
Combined Heat and Power Systems for Commercial Buildings: Investigating Cost, Emissions, and Primary Energy Reduction Based on System ComponentsSmith, Amanda D 15 December 2012 (has links)
Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.
|
334 |
Vapor-liquid equilibria of carbon dioxide-hydrocarbon systems at moderately high pressureOrbey, Hasan. January 1983 (has links)
No description available.
|
335 |
Vapour-liquid equilibria of benzene and cyclohexane with CO2Sejnoha, Milena. January 1986 (has links)
No description available.
|
336 |
The effects of carbon dioxide enrichment and aeration of hydroponic nutrient solutions on the growth and yield of lettuce /Wees, David January 1986 (has links)
No description available.
|
337 |
Feasibility study of aircraft measurement of CO2 exchangeAlvo, Peter S. January 1983 (has links)
No description available.
|
338 |
Oxidation of lipids in a supercriticalluid mediumSparks, Darrell Lynn 03 May 2008 (has links)
Efficient use of renewable feedstocks for production of chemicals and intermediates is necessary to reduce dependence upon petroleum. A large portion of these chemicals could be produced using lipids from renewable feedstocks such as vegetable oils, animal fats, and bacterial lipids. For example, many lipid sources contain unsaturated fatty acids, which can be oxidized to form a variety of products such as diacids and epoxides. These chemicals are used to formulate herbicides, detergents, plasticizers, lubricants, paints, and other useful products. One of the most common unsaturated fatty acids is oleic acid, and it can be oxidized with an ozone/oxygen mixture to produce azelaic acid and pelargonic acid. Since the ozone/oxygen mixture is a gas and oleic acid is a liquid under reaction conditions, mass transfer limitations exist. However, a reduction of the mass-transfer limitations can be achieved if the reactants coexist in a single phase. When supercritical carbon dioxide (SC-CO2) is used as the reaction medium, it is possible for both oleic acid and the ozone/oxygen mixture to both exist in the same phase at the same time. Use of supercritical carbon dioxide also provides the possibility of product fractionation, depending upon the solubility of the products in SC-CO2. The overall goal of this research was to determine if any advantages could be realized by conducting the oleic acid oxidation in a supercritical fluid medium. First, the solubility of azelaic acid and pelargonic acid in supercritical carbon dioxide was determined over a range of temperatures and pressures. Pelargonic acid was found to have a significantly higher solubility than azelaic acid, which indicated the potential for product separation with supercritical carbon dioxide. Second, the impact of the solvent medium on reaction kinetics and product formation was determined using two oxidizers: ozone and potassium permanganate. Due to experimental limitations, no reaction was observed in the case of ozone in supercritical carbon dioxide. However, oxidation of oleic acid with potassium permanganate in supercritical carbon dioxide resulted in higher oleic acid conversion and increased yields of azelaic acid and pelargonic acid compared to the oxidation without SC-CO2.
|
339 |
CO<sub>2</sub> Adsorption on amine-coated elastomers: an IR studyZhu, Yibing 07 June 2018 (has links)
No description available.
|
340 |
Novel Inorganic Sorbent for High Temperature Carbon Dioxide SeparationXiong, Rentian 04 September 2003 (has links)
No description available.
|
Page generated in 0.0346 seconds