• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constitutive modeling for biodegradable polymers for application in endovascular stents

da Silva Soares, Joao Filipe 10 October 2008 (has links)
Percutaneous transluminal balloon angioplasty followed by drug-eluting stent implantation has been of great benefit in coronary applications, whereas in peripheral applications, success rates remain low. Analysis of healing patterns in successful deployments shows that six months after implantation the artery has reorganized itself to accommodate the increase in caliber and there is no purpose for the stent to remain, potentially provoking inflammation and foreign body reaction. Thus, a fully biodegradable polymeric stent that fulfills the mission and steps away is of great benefit. Biodegradable polymers have a widespread usage in the biomedical field, such as sutures, scaffolds and implants. Degradation refers to bond scission process that breaks polymeric chains down to oligomers and monomers. Extensive degradation leads to erosion, which is the process of mass loss from the polymer bulk. The prevailing mechanism of biodegradation of aliphatic polyesters (the main class of biodegradable polymers used in biomedical applications) is random scission by passive hydrolysis and results in molecular weight reduction and softening. In order to understand the applicability and efficacy of biodegradable polymers, a two pronged approach involving experiments and theory is necessary. A constitutive model involving degradation and its impact on mechanical properties was developed through an extension of a material which response depends on the history of the motion and on a scalar parameter reflecting the local extent of degradation and depreciates the mechanical properties. A rate equation describing the chain scission process confers characteristics of stress relaxation, creep and hysteresis to the material, arising due to the entropy-producing nature of degradation and markedly different from their viscoelastic counterparts. Several initial and boundary value problems such as inflation and extension of cylinders were solved and the impacts of the constitutive model analyzed. In vitro degradation of poly(L-lactic acid) fibers under tensile load was performed and degradation and reduction in mechanical properties was dependent on the mechanical environment. Mechanical testing of degraded fibers allowed the proper choice of constitutive model and its evolution. Analysis of real stent geometries was made possible with the constitutive model integration into finite element setting and stent deformation patterns in response to pressurization changed dramatically as degradation proceeded.
2

Thromboresistant and rapid-endothelialization effects of dopamine and staphylococcal protein A mediated anti-CD34 coating on 316L stainless steel for cardiovascular devices

Chen, Jialong, Li, Quanli, Xu, Jianguang, Zhang, Le, Maitz, Manfred F., Li, Jun 07 January 2020 (has links)
There is convincing evidence in vivo that the vascular homing of endothelial progenitor cells (EPCs) contributes to rapid endothelial regeneration, which could prevent thrombosis and restenosis of cardiovascular devices. To enhance the EPC homing on cardiovascular devices, immobilization of an EPC capture agent (e.g. an anti-CD34 antibody) on the surface of cardiovascular devices is critical. We describe a way of immobilizing anti-CD34 Ab on 316L Stainless Steel (316L SS). For this, surface modification of 316L SS was performed via self-polymerization of dopamine (DA) and covalent grafting of staphylococcal protein A (SPA). On this coating the anti-CD34 Abs were oriented immobilized through their Fc constant region with SPA. In this process, the results of quartz crystal microbalance, X-ray photoelectron spectroscopy and water contact angle studies indicate that DA, SPA and anti-CD34 Ab were successfully immobilized onto the surface step by step. In vitro blood-compatibility tests confirmed that the modified surface induced less pro-coagulant fibrinogen denaturation, less platelet adhesion and lower activation of the adherent platelets. The affinity of EPCs for the modified surface has been demonstrated under flow conditions. This study provides potential applications for cardiovascular implant materials.

Page generated in 0.0525 seconds