11 |
Mitigating the Effects of Ionospheric Scintillation on GPS Carrier RecoveryOlivarez, Nathan 23 April 2013 (has links)
Ionospheric scintillation is a phenomenon caused by varying concentrations of charged particles in the upper atmosphere that induces deep fades and rapid phase rotations in satellite signals, including GPS. During periods of scintillation, carrier tracking loops often lose lock on the signal because the rapid phase rotations generate cycle slips in the PLL. One solution to mitigating this problem is by employing decision-directed carrier recovery algorithms that achieve data wipe-off using differential bit detection techniques. Other techniques involve PLLs with variable bandwidth and variable integration times. Since nearly 60% of the GPS signal repeats between frames, this thesis explores PLLs utilizing variable integration times and decision-directed algorithms that exploit the repeating data as a training sequence to aid in phase error estimation. Experiments conducted using a GPS signal generator, software radio, and MATLAB scintillation testbed compare the bit error rate of each of the receiver models. Training-based methods utilizing variable integration times show significant reductions in the likelihood of total loss of lock.
|
12 |
Implementace softwarového rádia do FPGA / Implementation of software radio into FPGAŠrámek, Petr January 2009 (has links)
The common objective of this project is implementation of software defined radio (SDR) into FPGA. The text contains review and comparison of several hardware concepts intended for SDRs implementation then the methods for digital implementation of various components of radios as the filters, mixers and others are mentioned. Part of the text introduces used hardware platform and describes software support for designing, simulations and implementation into hardware. Significant part of project describes complex of external hardware components as filter, amplifier and control panel designed and built within the project realization. But the main part of project demonstrates design of the software solution of radio receiver. There is specified architecture of radio for FM broadcast receiving, next the more complex systems with carrier recovery algorithm are presented. These systems are able to work with AM, BPSK and QPSK modulations. It is possible to implement all these receivers into hardware and verify their operation. The practical laboratory theme has been outlined within the project run.
|
Page generated in 0.0667 seconds