• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carrier recovery for 49 quadrature partial response signals

Jordaan, G.D. January 2008 (has links)
Published Article / A reference carrier signal should be regenerated from a received partial response (PR) signal in order to facilitate optimal demodulation of the received signal. This paper describes the development and evaluation of such a carrier recovery system using DSP techniques. The relative phase of a free-running local oscillator at the receiver is synchronized with the carrier signal of a received 49 quadrature partial response signal (49QPRS). Synchronization is achieved and maintained by means of a process of cross-correlation.
2

High-performance signal acquisition algorithms for wireless communications receivers

Shi, Kai 30 October 2006 (has links)
Due to the uncertainties introduced by the propagation channel, and RF and mixed signal circuits imperfections, digital communication receivers require efficient and robust signal acquisition algorithms for timing and carrier recovery, and interfer- ence rejection. The main theme of this work is the development of efficient and robust signal synchronization and interference rejection schemes for narrowband, wideband and ultra wideband communications systems. A series of novel signal acquisition schemes together with their performance analysis and comparisons with existing state-of-the- art results are introduced. The design effort is first focused on narrowband systems, and then on wideband and ultra wideband systems. For single carrier modulated narrowband systems, it is found that conventional timing recovery schemes present low efficiency, e.g., certain feedback timing recov- ery schemes exhibit the so-called hang-up phenomenon, while another class of blind feedforward timing recovery schemes presents large self-noise. Based on a general re- search framework, we propose new anti-hangup algorithms and prefiltering techniques to speed up the feedback timing recovery and reduce the self-noise of feedforward tim- ing estimators, respectively. Orthogonal frequency division multiplexing (OFDM) technique is well suited for wideband wireless systems. However, OFDM receivers require high performance car-rier and timing synchronization. A new coarse synchronization scheme is proposed for efficient carrier frequency offset and timing acquisition. Also, a novel highly accurate decision-directed algorithm is proposed to track and compensate the residual phase and timing errors after the coarse synchronization step. Both theoretical analysis and computer simulations indicate that the proposed algorithms greatly improve the performance of OFDM receivers. The results of an in-depth study show that a narrowband interference (NBI) could cause serious performance loss in multiband OFDMbased ultra-wideband (UWB) sys- tems. A novel NBI mitigation scheme, based on a digital NBI detector and adaptive analog notch filter bank, is proposed to reduce the effects of NBI in UWB systems. Simulation results show that the proposed NBI mitigation scheme improves signifi- cantly the performance of a standard UWB receiver (this improvement manifests as a signal-to-noise ratio (SNR) gain of 9 dB).
3

Modeling and Analysis of Synchronization Schemes for the TDMA Based Satellite Communication System

Wang, Chong January 2012 (has links)
No description available.
4

DOPPLER SHIFTED SPREAD SPECTRUM CARRIER RECOVERY USING REAL-TIME DSP TECHNIQUES

Scaife, Bradley J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / In any satellite communication, the Doppler shift associated with the satellite’s position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this paper, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on a simple, averaged discrete Fourier transform along with peak detection. We provide simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU’s implementation of NASA’s demand assignment, multiple access (DAMA) service.
5

Carrier Recovery in burst-mode 16-QAM

Chen, Jingxin 30 June 2004
Wireless communication systems such as multipoint communication systems (MCS) are becoming attractive as cost-effective means for providing network access in sparsely populated, rugged, or developing areas of the world. Since the radio spectrum is limited, it is desirable to use spectrally efficient modulation methods such as quadrature amplitude modulation (QAM) for high data rate channels. Many MCS employ time division multiple access (TDMA) and/or time division duplexing (TDD) techniques, in which transmissions operate in bursts. In many cases, a preamble of known symbols is appended to the beginning of each burst for carrier and symbol timing recovery (symbol timing is assumed known in this thesis). Preamble symbols consume bandwidth and power and are not used to convey information. In order for burst-mode communications to provide efficient data throughput, the synchronization time must be short compared to the user data portion of the burst. <p> Traditional methods of communication system synchronization such as phase-locked loops (PLLs) have demonstrated reduced performance when operated in burst-mode systems. In this thesis, a feedforward (FF) digital carrier recovery technique to achieve rapid carrier synchronization is proposed. The estimation algorithms for determining carrier offsets in carrier acquisition and tracking in a linear channel environment corrupted by additive white Gaussian noise (AWGN) are described. The estimation algorithms are derived based on the theory of maximum likelihood (ML) parameter estimation. The estimations include data-aided (DA) carrier frequency and phase estimations in acquisition and non-data-aided (NDA) carrier phase estimation in tracking. The DA carrier frequency and phase estimation algorithms are based on oversampling of a known preamble. The NDA carrier phase estimation makes use of symbol timing knowledge and estimates are extracted from the random data portion of the burst. The algorithms have been simulated and tested using Matlab® to verify their functionalities. The performance of these estimators is also evaluated in the burst-mode operations for 16-QAM and compared in the presence of non-ideal conditions (frequency offset, phase offset, and AWGN). The simulation results show that the carrier recovery techniques presented in this thesis proved to be applicable to the modulation schemes of 16-QAM. The simulations demonstrate that the techniques provide a fast carrier acquisition using a short preamble (about 111 symbols) and are suitable for burst-mode communication systems.
6

Carrier Recovery in burst-mode 16-QAM

Chen, Jingxin 30 June 2004 (has links)
Wireless communication systems such as multipoint communication systems (MCS) are becoming attractive as cost-effective means for providing network access in sparsely populated, rugged, or developing areas of the world. Since the radio spectrum is limited, it is desirable to use spectrally efficient modulation methods such as quadrature amplitude modulation (QAM) for high data rate channels. Many MCS employ time division multiple access (TDMA) and/or time division duplexing (TDD) techniques, in which transmissions operate in bursts. In many cases, a preamble of known symbols is appended to the beginning of each burst for carrier and symbol timing recovery (symbol timing is assumed known in this thesis). Preamble symbols consume bandwidth and power and are not used to convey information. In order for burst-mode communications to provide efficient data throughput, the synchronization time must be short compared to the user data portion of the burst. <p> Traditional methods of communication system synchronization such as phase-locked loops (PLLs) have demonstrated reduced performance when operated in burst-mode systems. In this thesis, a feedforward (FF) digital carrier recovery technique to achieve rapid carrier synchronization is proposed. The estimation algorithms for determining carrier offsets in carrier acquisition and tracking in a linear channel environment corrupted by additive white Gaussian noise (AWGN) are described. The estimation algorithms are derived based on the theory of maximum likelihood (ML) parameter estimation. The estimations include data-aided (DA) carrier frequency and phase estimations in acquisition and non-data-aided (NDA) carrier phase estimation in tracking. The DA carrier frequency and phase estimation algorithms are based on oversampling of a known preamble. The NDA carrier phase estimation makes use of symbol timing knowledge and estimates are extracted from the random data portion of the burst. The algorithms have been simulated and tested using Matlab® to verify their functionalities. The performance of these estimators is also evaluated in the burst-mode operations for 16-QAM and compared in the presence of non-ideal conditions (frequency offset, phase offset, and AWGN). The simulation results show that the carrier recovery techniques presented in this thesis proved to be applicable to the modulation schemes of 16-QAM. The simulations demonstrate that the techniques provide a fast carrier acquisition using a short preamble (about 111 symbols) and are suitable for burst-mode communication systems.
7

Live Demonstration of Mismatch Compensation for Time-Interleaved ADCs

Nilsson, Johan, Rothin, Mikael January 2012 (has links)
The purpose of this thesis is to demonstrate the effects of mismatch errors that occur in time-interleaved analog-to-digital converters (TI-ADC) and how these are compensated for by proprietary methods from Signal Processing Devices Sweden AB. This will be demonstrated by two different implementations, both based on the combined digitizer/generator SDR14. These demonstrations shall be done in a way that is easy to grasp for people with limited knowledge in signal processing. The first implementation is an analog video demo where an analog video signal is sampled by such an TI-ADC in the SDR14, and then converted back to analog and displayed with the help of a TV tuner. The mismatch compensation can be turned on and off and the difference on the resulting video image is clearly visible. The second implementation is a digital communication demo based on W-CDMA, implemented on the FPGA of the SDR14. Four parallel W-CDMA signals of 5 MHz are sent and received by the SDR14. QPSK, 16-QAM, and 64-QAM modulated signals were successfully sent and the mismatch effects were clearly visible in the constellation diagrams. Techniques used are, for example: root-raised cosine pulse shaping, RF modulation, carrier recovery, and timing recovery.
8

All-semiconductor High Power Mode-locked Laser System

Kim, Kyungbum 01 January 2006 (has links)
All-optical synchronization and its application in advanced optical communications have been investigated in this dissertation. Dynamics of all-optical timing synchronization (clock recovery) using multi-section gain-coupled distributed-feedback (MS-GC DFB) lasers are discussed. A record speed of 180-GHz timing synchronization has been demonstrated using this device. An all-optical carrier synchronization (phase and polarization recovery) scheme from PSK (phase shift keying) data is proposed and demonstrated for the first time. As an application of all-optical synchronization, the characterization of advanced modulation formats using a linear optical sampling technique was studied. The full characterization of 10-Gb/s RZ-BPSK (return-to-zero binary PSK) data has been demonstrated. Fast lockup and walk-off of the all-optical timing synchronization process on the order of nanoseconds were measured in both simulation and experiment. Phase stability of the recovered clock from a pseudo-random bit sequence signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5 % clock phase stability for large variations in power, bit rate and optical carrier frequency of the input data and therefore is suitable for applications in ultrafast optical packet switching. All-optical timing synchronization of 180-Gb/s data streams has been demonstrated using a MS-GC DFB laser. The recovered clock has a jitter of less than 410 fs over a dynamic range of 7 dB. All-optical carrier synchronization from phase modulated data utilizes a phase sensitive oscillator (PSO), which used a phase sensitive amplifier (PSA) as a gain block. Furthermore, all-optical carrier synchronization from 10-Gb/s BPSK data was demonstrated in experiment. The PSA is configured as a nonlinear optical loop mirror (NOLM). A discrete linear system analysis was carried out to understand the stability of the PSO. Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the sampling pulses be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have a negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of the sampling source. Characterization of the 10-Gb/s RZ-BPSK signal was demonstrated using the coherent detection technique. Measurements of the optical intensity profile, chirp and constellation diagram were demonstrated. A CW local oscillator was used and electrical sampling was performed using a sampling scope. A novel feedback scheme was used to stabilize homodyne detection.
9

The design of a high speed topology for a QPSK demodulator with emphasis on the synchronization algorithms needed for demodulation

Booysen, Samuel 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis describes the design and implementation of a software based QPSK demodulator with a demodulation speed of 100 Mbps. The objective of the thesis was to identify a topology for the QPSK demodulator that would allow for high data rates and the design of the synchronization algorithms for carrier and symbol recovery. The QPSK demodulator was implemented on an Altera Stratix II field programmable gate array (FPGA), which does complex I and Q sampling on a down converted 720 MHz QPSK signal. The I and Q down converted baseband signals are sent through matched filters which are implemented with discrete components to maximize the signal to noise ratio of the received rectangular baseband pulses. A 1 GSPS direct digital synthesizer (DDS) is used to generate the synchronous clock for the analog to digital converters which samples the matched filter outputs. The demodulator uses two samples per symbol to demodulate the QPSK signal. A dual locking system is implemented to have a wide pre-locking filter for symbol synchronization and a narrow band post-lock filter to minimize the loop noise. A symbol lock detection algorithm decides when the symbol recovery loop is locked and switches between the loop filters. A second 1 GSPS DDS output is mixed with a local oscillator to generate the 1.44 GHz LO signal for the quadrature down conversion. The carrier recovery loop uses a numerically controlled oscillator inside the FPGA for initial carrier acquisition which allows for very wide locking bandwidth. After lock is achieved, the external carrier recovery loop takes over and removes any frequency offset in the complex baseband signal by changing the frequency of the DDS. A QPSK modulator was also developed to provide a QPSK signal with known data. The modulator can generate any constellation diagram up to 256 points. / AFRIKAANSE OPSOMMING: Hierdie tesis bespreek die ontwerp en implementasie van ’n sagteware gebaseerde QPSK demodulator met ’n demodulasie spoed van 100 Mbps. Die doelstelling is om ’n topologie te identifiseer vir ’n QPSK demodulator wat ’n hoë datatempo sal toelaat en ook om sinkronisasie algoritmes te ontwikkel vir draer en simbool herkenning. Die QPSK demodulator is geïmplimenteer op ’n Stratix II FPGA van Altera wat kompleks basisband monstering doen op infase en kwadratuur basisband seine. Die basisband seine word gegenereer van ’n 720 MHz QPSK sein met ’n kwadratuur menger wiese uittrees deur puls passende filters gestuur word om die sein tot ruis verhouding te maksimeer. ’n Een gigamonster per sekonde direk digitale sintetiseerder (DDS) is gebruik om die klok vir die analoog na digitaal omsetters te genereer vir sinkrone monstering van die pulse passende filter uittrees. Die demodulator gebruik twee monsters per simbool om ’n QPSK sein te demoduleer. ’n Tweevoudige sluit algoritme word gebruik vir die simbool sinkronisasie waar ’n wyeband filter die inisiële sluit funksie verrig en dan word daar oorgeslaan na ’n nouband filter vir fase volging wat die ruis in die terugvoerlus verminder. Daar is ’n simbool sluit detektor wat identifiseer wanneer die simbool beheerlus gesluit is en selekteer dan die gepaste filter. ’n Tweede DDS en ’n sintetiseerder se uittrees word gemeng om ’n 1.44 GHz draer te genereer vir kohurente frekwensie translasie in die kwadratuur menger. Die draer sinkronisasie gebruik ’n numeries beheerbare ossilator vir die inisiële frekwensie en fase sluit wat baie vinnig geimplenteer kan word omdat dit alles in sagteware binne in die FPGA gebeur. Na die interne draer beheerlus gesluit is, neem die eksterne beheerlus oor om enige fase of frekwensie afsette in die kompleks basisband seine van die kwadratuur menger te verwyder deur die frekwensie van die draer DDS te beheer. ’n QPSK modulator is ook ontwikkel om verwysings data te genereer. Enige konstelasie vorm tot 256 punte kan geimplementeer word.
10

Extraction of radio frequency quality metric from digital video broadcast streams by cable using software defined radio

Eriksson, Viktor January 2013 (has links)
The purpose of this master thesis was to investigate how effiecient the extractionof radiofrequency quality metrics from digital video broadcast (DVB) streamscan become using software defined radio. Software defined radio (SDR) is a fairlynew technology that offers you the possibility of very flexible receivers and transmitters where it is possible to upgrade the modulation and demodulation overtime. Agama is interested in SDR for use in the Agama Analyzer, a widely deployedmonitoring probe running on top of standard services. Using SDR, Agama coulduse that in all deployments, such as DVB by cable/terrestrial/satellite (DVBC/T/S), which would simplify logistics. This thesis is an implementation of a SDR to be able to receive DVB-C. TheSDR must perform a number of adaptive algorithms in order to prevent the received symbols from being significantly different from the transmitted ones. Themain parts of the SDR include timing recovery, carrier recovery and equalization.Timing recovery performs synchronization between the transmitted and receivedsymbols and the carrier recovery performs synchronization between the carrierwave of the transmitter and the local oscillator in the receiver. The thesis discusses various methods to perform the different types of synchronizations andequalizations in order to find the most suitable methods.

Page generated in 0.1108 seconds