• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une approche neuro-dynamique de conception des processus d'auto-organisation

Alecu, Lucian 30 June 2011 (has links) (PDF)
Dans ce manuscrit nous proposons une architecture neuronale d'inspiration corticale, capable de développer un traitement émergent de type auto-organisation. Afin d'implémenter cette architecture neuronale de manière distribuée, nous utilisons le modèle de champs neuronaux dynamiques, un formalisme mathématique générique conçu pour modéliser la compétition des activités neuronales au niveau cortical mésoscopique. Pour analyser en détail les propriétés dynamiques des modèles de référence de ce formalisme, nous proposons un critère formel et un instrument d'évaluation, capable d'examiner et de quantifier le comportement dynamique d'un champ neuronal quelconque dans différents contextes de stimulation. Si cet instrument nous permet de mettre en évidence les avantages pratiques de ces modèles, il nous révèle aussi l'incapacité de ces modèles à conduire l'implantation des processus d'auto-organisation (implémenté par l'architecture décrite) vers des résultats satisfaisants. Ces résultats nous amènent à proposer une alternative aux modèles classiques de champs, basée sur un mécanisme de rétro-inhibition, qui implémente un processus local de régulation neuronale. Grâce à ce mécanisme, le nouveau modèle de champ réussit à implémenter avec succès le processus d'auto-organisation décrit par l'architecture proposée d'inspiration corticale. De plus, une analyse détaillée confirme que ce formalisme garde les caractéristiques dynamiques exhibées par les modèles classiques de champs neuronaux. Ces résultats ouvrent la perspective de développement des architectures de calcul neuronal de traitement d'information pour la conception des solutions logicielles ou robotiques bio-inspirées.
2

Une approche neuro-dynamique de conception des processus d'auto-organisation / A neuro-dynamic approach for designing self-organizing processes

Alecu, Lucian 30 June 2011 (has links)
Dans ce manuscrit nous proposons une architecture neuronale d'inspiration corticale, capable de développer un traitement émergent de type auto-organisation. Afin d'implémenter cette architecture neuronale de manière distribuée, nous utilisons le modèle de champs neuronaux dynamiques, un formalisme mathématique générique conçu pour modéliser la compétition des activités neuronales au niveau cortical mésoscopique. Pour analyser en détail les propriétés dynamiques des modèles de référence de ce formalisme, nous proposons un critère formel et un instrument d'évaluation, capable d'examiner et de quantifier le comportement dynamique d'un champ neuronal quelconque dans différents contextes de stimulation. Si cet instrument nous permet de mettre en évidence les avantages pratiques de ces modèles, il nous révèle aussi l'incapacité de ces modèles à conduire l'implantation des processus d'auto-organisation (implémenté par l'architecture décrite) vers des résultats satisfaisants. Ces résultats nous amènent à proposer une alternative aux modèles classiques de champs, basée sur un mécanisme de rétro-inhibition, qui implémente un processus local de régulation neuronale. Grâce à ce mécanisme, le nouveau modèle de champ réussit à implémenter avec succès le processus d'auto-organisation décrit par l'architecture proposée d'inspiration corticale. De plus, une analyse détaillée confirme que ce formalisme garde les caractéristiques dynamiques exhibées par les modèles classiques de champs neuronaux. Ces résultats ouvrent la perspective de développement des architectures de calcul neuronal de traitement d'information pour la conception des solutions logicielles ou robotiques bio-inspirées / In this work we propose a cortically inspired neural architecture capable of developping an emergent process of self-organization. In order to implement this neural architecture in a distributed manner, we use the dynamic neural fields paradigm, a generic mathematical formalism aimed at modeling the competition between the neural activities at a mesoscopic level of the cortical structure. In order to examine in detail the dynamic properties of classical models, we design a formal criterion and an evaluation instrument, capable of analysing and quantifying the dynamic behavior of the any neural field, in specific contexts of stimulation. While this instrument highlights the practical advantages of the usage of such models, it also reveals the inability of these models to help implementing the self-organization process (implemented by the described architecture) with satisfactory results. These results lead us to suggest an alternative to the classical neural field models, based on a back-inhibition model which implements a local process of neural activity regulation. Thanks to this mechanism, the new neural field model is capable of achieving successful results in the implementation of the self-organization process described by our cortically inspired neural architecture. Moreover, a detailed analysis confirms that this new neural field maintains the features of the classical field models. The results described in this thesis open the perspectives for developping neuro-computational architectures for the design of software solutions or biologically-inspired robot applications
3

De la diffusion latérale des récepteurs AMPA à la perception des whiskers : un nouveau modèle de cartographie corticale / From AMPAR lateral diffusion to whisker perception : a new model for cortical remapping

Campelo, Tiago 07 October 2019 (has links)
Les champs récepteurs corticaux se réorganisent en réponse aux changements de l'environnement. Par exemple, suite à une lésion périphérique, les modalités sensorielles préservées gagnent de l'espace cortical au détriment de celles lésées. L'étude du cortex somatosensoriel en tonneau des rongeurs a fourni des données importantes pour la compréhension des mécanismes synaptiques à l'origine de cette réorganisation corticale. En condition normale, les neurones de chaque colonne corticale répondent préférentiellement à la stimulation d'une seule vibrisse principale ("Principal Whisker, PW"). Au contraire, suite à l'amputation de l'ensemble des vibrisses sauf une ("Single Whisker Experience, SWE"), les neurones des colonnes associées aux vibrisses amputées répondent à la stimulation de la vibrisse conservée, à l'origine du renforcement et de l'expansion des représentations corticales des vibrisses conservées. Bien que des preuves indirectes aient révélées un rôle de la potentialisation à long terme ("Long-Term Potentiation, LTP") de synapses préexistantes dans la modification des cartes corticales, probablement via une augmentation du nombre des récepteurs AMPA (AMPARs) aux synapses, un lien direct entre la LTP, la réorganisation des cartes corticales, et l'adaptation des comportements sensori-moteurs suite à une altération des entrées sensorielles n'a pas encore été démontré. L'objectif de cette thèse a donc été de mettre en évidence cette relation de façon expérimentale et en condition physiologique. Pour cela, nous avons mis au point une stratégie in vivo combinant des enregistrements électrophysiologiques, de l'imagerie biphotonique et l'analyse du comportement d'exploration chez la souris contrôle ("Full Whisker Experience, FWE) et amputée de certaines vibrisses (SWE). Nous avons d'abord confirmé que la stimulation rythmique de la PW ("Rhytmic Whisker Swtimulation, RWS") renforce les synapses excitatrices (RWS-LTP) in vivo des souris anesthésiées FWE. Au contraire des souris FWE, les neurones pyramidaux des souris SWE présentent une augmentation de l'excitabilité neuronale et une absence de RWS-LTP, indiquant ainsi que les synapses corticales associées à la vibrisse intacte ont été potentialisées en réponse au protocole SWE. Pour mieux comprendre l'implication de la RWS-LTP dans la réorganisation des cartes corticales et l'adaptation des comportements sensori-moteurs, nous avons développé une nouvelle approche pour manipuler la LTP in vivo grâce à l'immobilisation des AMPARs par des anticorps extracellulaires ("cross-linking"). En effet, notre équipe a montré précédemment que le cross-linking des AMPARs empêche la LTP in vitro. Par ailleurs, une accumulation des AMPARs au niveau post-synaptique a été démontrée in vivo par imagerie biphotonique au cours d'une stimulation RWS, suggérant un rôle de la mobilité de ces récepteurs dans cette RWS-LTP. Au cours de cette thèse, nous avons démontré que le cross-linking des AMPARs in vivo bloque également l'expression de la RWS-LTP, mais sans affecter la transmission synaptique basale, ni l'induction de la RWS-LTP, indiquant ainsi que la mobilité des AMPARs est également fondamental pour l'expression de la LTP in vivo. De façon importante, le cross-linking des AMPARs de façon chronique, au cours du SWE, permet non seulement de rétablir la RWS-LTP et l'excitabilité neuronale, et donc de bloquer la réorganisation corticale, mais aussi de modifier les capacités de récupération sensori-motrices des souris amputées. Dans l'ensemble, nos données démontrent pour la première fois un rôle critique et direct de la RWS-LTP dans le réarrangement des circuits en réponse à l'amputation de certaines vibrisses. La réorganisation des cartes corticales serait ainsi assurée par le renforcement de la transmission synaptique, et constituerait alors un mécanisme compensatoire pour optimiser le comportement sensorimoteur de l'animal lors de l'altération des entrées sensorielles. / Neuronal receptive fields in the cerebral cortex change in response to peripheral injury, with active modalities gaining cortical space at the expense of less active ones. Experiments on the mouse whisker-to-barrel cortex system provided important evidences about the synaptic mechanisms driving this cortical remapping. Under normal conditions, neurons in each barrel-column have receptive fields that are strongly tuned towards one principal whisker (PW). However, trimming all the whiskers except one (single-whisker experience, SWE) causes layer (L) 2/3 pyramidal neurons located in the deprived and spared-related columns to increase their response towards the spared input. This results in a strengthening and expansion of the spared whisker representation within the barrel sensory map. Indirect evidences suggest that these cortical alterations might depend on the activity-dependent potentiation of pre-existing excitatory synapses (LTP), likely through increased levels of postsynaptic AMPA receptors (AMPARs). However, a clear link between LTP, cortical remapping, and the adaptation of sensorimotor skills following altered sensory experience has not yet convincingly been demonstrated. Here, we combined in vivo whole-cell recordings, 2-Photon calcium imaging and a whisker-dependent behavior protocol to directly demonstrate this relationship. It has been described that rhythmic whisker stimulation potentiates cortical synapses (RWS-LTP) in vivo. An accumulation of postsynaptic AMPARs during similar sensory stimulation was also reported by imaging evidences. Our data demonstrates that this potentiation is occluded by SWE, suggesting that cortical synapses are already potentiated by this trimming protocol. This is translated into an increased neuronal excitability in the spared column and sensorimotor recovery by the spared whisker. To better understand the implication of LTP in cortical remapping, we developed a novel approach to manipulate LTP in vivo without affecting overall circuit properties. Our team showed previously that the blockage of AMPARs synaptic recruitment by extracellular antibody cross-linking prevents LTP in vitro. Here, we report that in vivo cross-linking of AMPARs blocks the expression but not the induction of RWS-LTP, suggesting that the synaptic recruitment of AMPARs is fundamental for in vivo LTP as well. Moreover, chronic AMPAR cross-linking during SWE reverts RWS-LTP occlusion and the increased neuronal excitability caused by whisker trimming. As consequence, the sensorimotor performance by the spared whisker is permanently impaired by the blockage of cortical remapping. Altogether, these evidences led us to define a critical role for synaptic LTP on circuit re-arrangement after whisker trimming. Our data shows that LTP-driven cortical remapping is a compensatory mechanism to optimize animal’s sensorimotor behavior upon altered sensory experience.

Page generated in 0.0615 seconds