• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Analysis of Contactin-Associated Protein and Voltage-Gated Sodium Channel Isoform 1.6 following Experimental Diffuse Traumatic Brain Injury

Gardiner, Daniel 18 July 2011 (has links)
Traumatic axonal injury (TAI) contributes to the mortality and morbidity following diffuse traumatic brain injury (TBI). Previous work has shown that following TBI, alterations in the molecular domains of axons result in TAI. It is currently posited that injury induced ionic flux is responsible for activating deleterious proteolytic cascades, resulting in altered distributions of axonal components. However, the underlying mechanism of this progressive pathology remains elusive. This study further explores the hypothesis that altered molecular domains contributes to the progressive intra-axonal changes that characterize TAI. Using a rodent model of impact acceleration TBI we examined the expression of nodal and paranodal domains of myelinated axons in brainstem over a 24 h period post-injury. Western blot analysis was utilized to quantify changes in protein levels of Nav1.6, a prominent component at the node of Ranvier, and Caspr, a constituent of the paranodal tripartite complex. Here we report that diffuse TBI causes an up-regulation of Nav1.6 and a down-regulation of Caspr over a 24 h time-course post-injury. The results of this study support that alterations in the molecular components of the domains of injured axons contribute to the cellular mechanism of TAI and thus provides novel data in the field of TBI research.
2

Molecular Interactions between Neurons and Oligodendrocytes during Myelin Formation / Dissertation for the award of the degree "Doctor rerum naturalium" Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen

Timmler, Sebastian 17 September 2018 (has links)
No description available.
3

Unveiling the Impact of the “-opathies”: Axonopathy, Dysferopathy, and Synaptopathy in Glaucomatous Neurodegeneration.

Smith, Matthew Alan January 2017 (has links)
No description available.

Page generated in 0.0436 seconds