• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of Model Plant Cell Wall Materials to Probe Gut Microbiota Use of Dietary Fiber

Nuseybe Bulut (5930564) 31 January 2022 (has links)
The cell wall provides a complex and rigid structure to the plant for support, protection from environmental factors, and transport. It is mainly composed of polysaccharides, proteins, and lignin. Arabinoxylan (AX), pectin (P), and cellulose (C) are the main components of cereal cell walls and are particularly concentrated in the bran portion of the grain. Cereal arabinoxylans create networks in plant cell walls in which other cell wall polysaccharides are imbedded forming complex matrices. These networks give an insolubility profile to plant cell wall. A previous study in our lab showed that soluble crosslinked arabinoxylan with relatively high residual ferulic acid from corn bran provided advantageous <i>in vitro </i>human fecal fermentation products and promoted butyrogenic gut bacteria. In the present work, arabinoxylan was isolated from corn bran with a mild sodium hydroxide concentration to keep most of its ferulic acid content. Highly ferulated corn bran arabinoxylan was crosslinked to create an insoluble network to mimic the cereal grain cell wall matrices. Firstly, arabinoxylan film (Cax-F), pectin film (P-F), the film produced by embedding pectin into arabinoxylan networks (CaxP-F), and cellulose embedding arabinoxylan matrices (CaxC-F), and embedding the mixture of cellulose and pectin into arabinoxylan networks (CaxCP-F) were fabricated into simulated plant cell wall materials. Water solubility of films in terms of monosaccharide content was examined and revealed that Cax-F was insoluble, and P-F was partially insoluble, and nanosized pectin and cellulose were partially entrapped inside the crosslinked-arabinoxylan matrices. In a further study, these films were used in an <i>in vitro </i>human fecal fermentation assay to understand how gut microbiota access and utilize the different simulated plant cell walls to highlight the role of each plant cell wall component during colonic fermentation. <i>In vitro </i>fecal samples, obtained from three healthy donors were used to ferment the films (Cax-F, P-F, CaxP-F, CaxC-F, and CaxCP-F) and controls (free form of cell wall components -Cax, P and C). The fabricated films that were compositionally similar to cell walls were fermented more slowly than the free polysaccharides (Cax and P). Besides, CaxP-F produced the highest short chain fatty acids (SCFA) amount among the films after 24 hour <i>in vitro </i>fecal fermentation. Regarding specific SCFA, butyrate molar ratio of all films was significantly higher than the free, soluble Cax and P. 16S rRNA gene sequencing explained the differences of the butyrate proportion derived from specific butyrogenic bacteria. Particularly, some bacteria, especially in a butyrogenic genera from Clostridium cluster XIVa, were increased in arabinoxylan films forms compared to the native free arabinoxylan polysaccharide. However, no changes were observed between P and P-F in terms of both end products (SCFA) and microbiota compositions. Moreover, CaxP-F promoted the butyrogenic bacteria in fecal samples compared with pectin alone, arabinoxylan alone, and the arabinoxylan film. Differences in matrix insolubility of the film, which was high for the covalently linked arabinoxylan films, but low for the non-covalent ionic-linked pectin film, appears to play an important role in targeting Clostridial bacterial groups. Overall, the cell wall-like films were useful to understand which bacteria degrade them related to their physical form and location of the fiber polymers. This study showed how fabricated model plant cell wall films influence specificity and competitiveness of some gut bacteria and suggest that fabricated materials using natural fibers might be used for targeted support of certain gut bacteria and bacterial groups.
2

DESIGN AND CHARACTERIZATION OF A PEO-BASED POLYMER COMPOSITE ELECTROLYTE EMBEDDED WITH DOPED-LLZO: ROLE OF DOPANT IN BULK IONIC CONDUCTIVITY

Andres Villa Pulido (8083202) 06 December 2019 (has links)
Ionic conductivity of solid polymer electrolytes (SPEs) can be enhanced by the addition of fillers, while maintaining good chemical stability, and compatibility with popular cathode and anode materials. Additionally, polymer composite electrolytes can replace the flammable organic liquid in a lithium-ion battery design and are compatible with lithium metal. Compatibility with Li-metal is a key development towards a next-generation rechargeable Li-ion battery, as a Li-metal anode has a specific capacity an order of magnitude higher than LiC6 anodes used today in everyday devices. The addition of fillers is understood to suppress the crystalline fraction in the polymer phase, increasing the ionic conductivity, as Li-ion conduction is most mobile through the amorphous phase. A full model for a conduction mechanism has not yet constructed, as there is evidence that a semi-crystalline PEO-based electrolyte performs better than a fully amorphous electrolyte. Furthermore, it is not yet fully understood why the weight load of fillers in PCEs can range from 2.5%wt to 52.5%wt, in order to achieve high ionic conductivity (~10-4S/cm). This work seeks to investigate the conduction mechanism in the PCE through the use of doped-Li7La3Zr2O12 as a filler and analysis of the PCE microstructure. In this work, a solid-state electrolyte, doped-Li7La3Zr2O12 (LLZO) was synthesized via a sol-gel method, and characterized. The effect of doping and co-doping the Li, La and Zr sites in the LLZO garnet was investigated. A PEO-based polymer composite electrolyte (PCE) was prepared by adding bismuth doped LLZO (Li7-xLa3Zr2-xBixO12) as a filler. The bismuth molar ratio was changed in value to study the dopant role on the bulk PCE ionic conductivity, polymer phase crystallinity and microstructure. Results suggest that small variations in dopant can determine the optimal weight load of filler at which the maximum ionic conductivity is reached. By understanding the relationship between filler properties and electrochemical properties, higher performance can be achieved with minimal filler content, lowering manufacturing costs a solid-state rechargeable Li-ion battery.<br>

Page generated in 0.2682 seconds