• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lithium Ionic Conductivity and Stability Of Cubic Li7La3Zr2O12 Solid Electrolyte A First-Principles Study

Saha, Sudipto January 2020 (has links)
Garnet structured cubic LLZO crystal (Li56La24Zr16O96) is one of the most promising solid electrolytes for next-generation solid-state lithium-ion batteries. Ab initio molecular dynamics simulations have been employed to study the impacts of lithium vacancy defect and doping concentration on the lithium ionic conductivity and stability of LLZO. The number of lithium atoms in a unit cell of LLZO has been reduced from 56 to 53, where 56 lithium atoms represent the structure of stoichiometric LLZO, i.e., Li7La3Zr2O12. Similarly, the effect of Al and Ga doping on the conductivity and stability of LLZO material was also investigated. Our computational results confirm that both the defects help in enhancing the conductivity of LLZO and the concentration of defect introduced controls the trade-off between the conductivity and stability. Overall, this study provides a valuable insight into the enhancement of conductivity of cubic LLZO garnet material along with structural stability.
2

Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces / All solid-state battery for automotive application : shaping process and study of interfaces

Hajndl, Ognjen 15 March 2019 (has links)
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC. / Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters.
3

DESIGN AND CHARACTERIZATION OF A PEO-BASED POLYMER COMPOSITE ELECTROLYTE EMBEDDED WITH DOPED-LLZO: ROLE OF DOPANT IN BULK IONIC CONDUCTIVITY

Andres Villa Pulido (8083202) 06 December 2019 (has links)
Ionic conductivity of solid polymer electrolytes (SPEs) can be enhanced by the addition of fillers, while maintaining good chemical stability, and compatibility with popular cathode and anode materials. Additionally, polymer composite electrolytes can replace the flammable organic liquid in a lithium-ion battery design and are compatible with lithium metal. Compatibility with Li-metal is a key development towards a next-generation rechargeable Li-ion battery, as a Li-metal anode has a specific capacity an order of magnitude higher than LiC6 anodes used today in everyday devices. The addition of fillers is understood to suppress the crystalline fraction in the polymer phase, increasing the ionic conductivity, as Li-ion conduction is most mobile through the amorphous phase. A full model for a conduction mechanism has not yet constructed, as there is evidence that a semi-crystalline PEO-based electrolyte performs better than a fully amorphous electrolyte. Furthermore, it is not yet fully understood why the weight load of fillers in PCEs can range from 2.5%wt to 52.5%wt, in order to achieve high ionic conductivity (~10-4S/cm). This work seeks to investigate the conduction mechanism in the PCE through the use of doped-Li7La3Zr2O12 as a filler and analysis of the PCE microstructure. In this work, a solid-state electrolyte, doped-Li7La3Zr2O12 (LLZO) was synthesized via a sol-gel method, and characterized. The effect of doping and co-doping the Li, La and Zr sites in the LLZO garnet was investigated. A PEO-based polymer composite electrolyte (PCE) was prepared by adding bismuth doped LLZO (Li7-xLa3Zr2-xBixO12) as a filler. The bismuth molar ratio was changed in value to study the dopant role on the bulk PCE ionic conductivity, polymer phase crystallinity and microstructure. Results suggest that small variations in dopant can determine the optimal weight load of filler at which the maximum ionic conductivity is reached. By understanding the relationship between filler properties and electrochemical properties, higher performance can be achieved with minimal filler content, lowering manufacturing costs a solid-state rechargeable Li-ion battery.<br>
4

Phase field modelling of LLZO/LCO cathode-electrolyte interfaces in solid state batteries

Riva, Michele January 2018 (has links)
This work describes two phase field models for the simulation of the interface evolution between a LiCoO2 cathode (LCO) and a Li7La3Zr2O12 solid electrolyte (LLZO) in a Li-metal/LLZO/LCO battery during high temperature sintering. In these conditions atomic species tend to diffuse into the opposing material, creating an intermediate layer of mixed composition which resists the movement of lithium ions. This undesired effect prevents the resulting solid-state battery to achieve its theoretical performances and needs to be avoided. The first model is an adaptation of the work of J. M. Hu et alii [1] for a similar interface problem encountered between yttria-stabilized zirconia electrolytes (YSZ) and lanthanum-strontium-manganite cathodes (LSM) in solid oxide fuelcells (SOFC), while the second is based on the work of D. A. Cogswell [2][3] for phase separation in metal alloys, extended to include electrostatic effects due to internal charge unbalances and externally applied electric fields. Animplementation of the latter is however lacking, and the interested reader is encouraged to build one up on the theoretical framework presented in this paper. In the conclusion section it is possible to find insights on how to prevent the interfacial diffusion between LCO and LLZO with reference to experimental attempts and simulations, as well as future directions for the development of the models.
5

A quest for better battery materials: Accelerating discovery through efficient exploration and rational design

Juan Carlos Verduzco Gastelum (16631382) 21 July 2023 (has links)
<p>The Materials Genome Initiative (MGI) has established guidelines to accelerate the discovery, development, and implementation of advanced materials in order to address current and future challenges. A key area of interest is the pressing need for more efficient energy storage systems to support technologies such as electric vehicles and renewable energies. In this work, we present an Integrated Computational Materials Engineering approach for the development of novel solid-state electrolyte materials. In particular, we embark on a quest to unravel the potential of ceramic garnet lithium lanthanum zirconium oxide (LLZO) for next-generation battery technologies.</p> <p>Our exploration begins with an overview of the current state of the Materials Innovation Infrastructure (MII) and our rationale behind choosing LLZO. Through the use of machine learning techniques and molecular dynamics simulations, we aim for efficient material optimization. Our findings are reinforced through experiments by using these materials as inorganic fillers in composite polymer electrolytes. Our findings demonstrate that the combined use of these complementary techniques facilitates the discovery of potential alternative solid-state electrolytes. Finally, we propose future research directions in materials science for the design of advanced materials using these integrated approaches. </p>

Page generated in 0.0231 seconds