• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 170
  • 81
  • 68
  • 36
  • 19
  • 14
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1274
  • 193
  • 181
  • 169
  • 118
  • 116
  • 113
  • 110
  • 106
  • 99
  • 95
  • 89
  • 86
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Amines in Olefin Metathesis: Ligands and Poisons

Ireland, Benjamin January 2016 (has links)
Olefin metathesis is a powerful tool for assembly of carbon-carbon bonds. Amines and related N-donors are problematic functional groups in Ru-catalyzed olefin metathesis - a well- documented, but poorly understood problem. The first part of this thesis focuses on amine-induced deactivation pathways; two of which are described in depth. Alkylidene abstraction, a previously unknown reaction for nitrogen nucleophiles, was observed for smaller and less Bronsted-basic amines. Deprotonation of the metallacyclobutane intermediate formed during catalysis is prominent for highly Bronsted basic or sterically bulky N-donors. Monosubstituted (and, by extension unsubstituted) metallacyclobutanes are particularly vulnerable to deprotonation. For each pathway, the fate of the alkylidene Ru=CHR functional group proved key in determining the nature of deactivation. Both pathways have been detected during catalysis, as evidenced by formation of diagnostic amine (RCH2NR2’) or substituted propene products. A combination of quantitative NMR and GC-MS analysis was used to identify these species on loss of the Ru-alkylidene functional group. The second part of this thesis focuses on incorporating amines into catalyst design – an under-utilized strategy in the context of Ru-catalyzed olefin metathesis. A modified Grubbs-type catalyst was developed featuring a bulky, relatively non-basic biaryldiamine ligand. Metathesis activity for this catalyst was comparable, and in some cases superior to the most widely-used homogeneous catalysts currently available. Several new, related Ru-benzylidenes were also prepared and fully characterized in conjunction with the mechanistic studies described above. Progress toward development of N-anion-containing metathesis catalysts is also discussed. Synthesis of Ru-hydride complexes originally intended for this purpose allowed for a fundamental study of the coordination chemistry and reductive elimination chemistry of the NPh2– anion.
172

Reaction kinetics and reactor modelling in the design of catalytic reactors for automotive exhaust gas abatement

Ahola, J. (Juha) 10 February 2009 (has links)
Abstract The tightening environmental legislation and technological development in automotive engineering form a challenge in reactor design of catalytic reactors for automotive exhaust gas abatement. The catalytic reactor is the heart of the exhaust aftertreatment processes, but it can be seen also just as one subsidiary part of vehicles. The aim of this work is to reveal applicable kinetic models to predict behaviour of the particular catalysts and to establish guidelines for modelling procedures and experimentation facilitating catalytic reactor design, especially in the field of automotive exhaust gas abatement. The studies in this thesis include catalyst kinetics with synthetic exhaust gas composition in stoichiometric and net oxidative conditions, DRIFT measurements, and the warm-up of three-way catalysts in real conditions. Knowledge on surface concentrations facilitates kinetic model construction and discrimination. For example, identification of even semi-quantitative surface concentrations may lead to a successful falsification of incorrect kinetic model candidates. Especially, that is clearly seen in cases where models predict the same kind of gas phase behaviour but different kinds of surface concentration profiles. The transient kinetic experiments could give a hint on predominant reaction mechanism, support quantifying of the adsorption capacity and reveal the impact of surface phenomena on reactor dynamics. The level of model complexity should be adapted depending on the purpose of the model. For example, it is mostly convenient for reactor design purposes to perceive only one type of active sites even in a case of mechanical mixture of different catalytic materials; whereas the optimisation of catalyst content demands the management of every prominent site type separately. Or, when a catalytic material has been selected, the stationary kinetic model is, in most cases, adequate for the catalytic converter design and structural optimization for warm-up conditions.
173

An unusually stable chiral ethyl zinc complex : reactivity and polymerization of lactide

Labourdette, Guillaume 11 1900 (has links)
The racemic (±)-2,4-di-tert-butyl-6-(((2-(dimethylamino)cyclohexyl)(methyl) amino)methyl)phenol ((±)-(NNMeOtBu)H), (±)-2,4-di-tert-butyl-6-((2-(dimethylamino) cyclohexylamino)methyl)phenol ((±)-(NNHOtBu)H), and (±)-2-(((2-(dimethylamino) cyclohexyl)(methyl)amino) methyl)phenol ((±)-(NNMeOH)H) are chiral ancillary NNO proligands, which synthesis was adapted from a published procedure. Reaction of (±)-(NNMeOtBu)H ((±)-2), (±)-(NNMeOH)H ((±)-3) and (±)-(NNHOtBu)H ((±)-1) with ZnEt2 successfully yielded the corresponding zinc ethyl complexes (±)-5, (±)-6 and (±)-7 respectively; the enantiomerically pure (R,R)-5 was synthesized from (R,R)-2. NMR spectroscopy experiments and X-ray crystallography allowed identification of two stereoisomers for (±)-5, which were observed in solution and in the solid state. The two stereoisomers, 5-α and 5-β, are in equilibrium in solution, with 5-β being thermodynamically favored. The zinc ethyl complexes were found to be unreactive towards weakly acidic alcohols (methanol, ethanol, isopropanol). However, the zinc chloride complex (±)-(NNMeOtBu)ZnCl ((±)-8) and the zinc phenoxide (NNMeOtBu)ZnOPh ((±)-9 and (R,R)-9) could be isolated and characterized. Comparison of the reactivity of both (±)-5 and the reported L₁ZnEt (L₁ = 2,4-di-tert-butyl-6- {[(2'-dimethylaminoethyl) methylamino]methyl}phenolate) in presence of pyridine led to the proposal of a dissociative mechanism explaining the fundamental difference between the two zinc ethyl species. Polymerization of rac-lactide catalyzed by 9 showed that the complex, in its racemic or enantiomerically pure version, has a slow activity and is not stereoselective. / Science, Faculty of / Chemistry, Department of / Graduate
174

Palladium-Based Catalysts for Ethanol Electrooxidation in Alkaline Media

Brazeau, Nicolas January 2015 (has links)
Direct ethanol fuel cells have been shown to be a good alternative to internal combustion engines in order to reduce the CO2 emissions. In this study, Pd and Pd-based nanocatalysts were deposited on various supports (carbon black, graphene, SnO2, CeO2, TiO2, TiO2 nanotubes and SnO2/TiO2 nanotubes) and their effects on the catalytic properties of the deposited metal for ethanol oxidation in alkaline media are studied. These modifications to the catalytic systems have shown to cause an increase in the reaction rate at the surface of the catalyst and to reduce the overpotential of the ethanol oxidation reaction. Two different promotion mechanisms have been identified. Firstly, the supply of OH- ions at the metal-support interface facilitates the oxidation of adsorbed molecules on neighbouring Pd sites. Secondly, an increase in electron density of Pd nanoparticles with increasing support reducibility modifies the adsorption strength of ethanol and its oxidation intermediates.
175

Olefin Metathesis: Life, Death, and Sustainability

Lummiss, Justin Alexander MacDonald January 2015 (has links)
Over the past 15 years, ruthenium-catalyzed olefin metathesis has emerged as a cornerstone synthetic methodology in academia. Applications in fine-chemicals and pharmaceutical manufacturing, however, are just beginning to come on stream. Industrial uptake has been impeded by economic constraints associated with catalyst costs. These are due both to direct costs (exacerbated by intellectual property issues), and to further pressure exerted by the low turnover numbers attainable, and the need for extensive purification to remove ruthenium residues. From another perspective, however, these difficulties can be seen as arising from our rudimentary understanding of the fundamental organometallic chemistry of the Ru=CHR bond. In particular, we know little about the nature and reaction pathways of the Ru-methylidene unit present in the active species that propagates metathesis, and in the catalyst resting state. We know slightly more about the ruthenacyclobutane species, but still too little to guide us as to their non-metathetical reaction pathways, their contribution to deactivation relative to the methylidene species, and potential work-arounds. This thesis work was aimed at improving our understanding of the reactivity, speciation, and decomposition of key ruthenium intermediates in olefin metathesis. A major focus was the behaviour and deactivation of species formed from the second-generation Grubbs catalyst RuCl2(H2IMes)(PCy3)(=CHPh) (S-GII), which dominates ring-closing metathesis. Also studied were derivatives of the corresponding IMes catalyst A-GIIm, containing an unsaturated Nheterocyclic carbene (NHC) ligand. The methylidene complexes RuCl2(NHC)(PCy3)(=CH2) (GIIm) represent the resting state of the catalyst during ring-closing and cross-metathesis reactions: that is, the majority Ru species present during catalysis. Mechanistic studies of these key intermediates have been restricted, however, by the low yields and purity with which they could be accessed. Initial work therefore focused on designing a clean, high-yield route to the second-generation Grubbs methylidene complexes S-GIIm and A-GIIm. These routes were subsequently expanded to develop access to isotopically-labelled derivatives. Locating a 13C-label at the key alkylidene site, in particular, offers a powerful means of tracking the fate of the methylidene moiety during catalyst deactivation. Access to GIIm enabled detailed studies of the behaviour and decomposition of the Grubbs catalysts. First, the long-standing question of the impact of saturation of the NHC backbone (i.e. IMes vs. H2IMes) was examined. Dramatic differences in the behaviour of the two complexes were traced to profound differences in PCy3 lability arising from the diminished π-acidity of the IMes ligand. Secondly, the vulnerability of GIIm to nucleophiles was examined. This is an important issue from the perspective of decomposition by adventitious nucleophiles in the reaction medium during catalysis, but also reflects on substrate scope. For amine additives, the dominant deactivation pathway was shown to typically involve attack on the resting-state methylidene complex, not the metallacyclobutane, which has often been regarded as the most vulnerable intermediate. In addition, the sigma-alkyl intermediate formed by nucleophilic attack of displaced phosphine at the methylidene carbon was trapped by moving to the first-generation complex, and using a nitrogen donor (pyridine) that cannot promote decomposition via N–H activation pathways. Interception of this long-suspected species led to the proposal of “donorinduced” deactivation as a general decomposition pathway for Grubbs-class catalysts. Finally, the capacity of phosphine-free catalysts to overcome the shortcomings of the secondgeneration Grubbs catalysts was demonstrated, in a case study involving application of crossmetathesis (CM) to the synthesis of a high-value antioxidant. An efficient CM methodology was developed for the reaction of renewable essential-oil phenylpropenoids with vinyl acrylates. This work illustrates a new paradigm in sustainable metathesis. Rather than degrading unsaturated feedstocks via metathesis (a process that can be termed “metathe[LY]sis”), it demonstrates how metathesis with directly-functionalized olefins can be used to augment structure and function. From the perspective of organometallic chemistry and catalyst design, key comparisons built into this thesis are the effect of the NHC ligand (IMes vs. H2IMes) and its trans ancillary ligand on the efficient entry into catalysis; the susceptibility to nucleophilic attack of the alkylidene ligand (benzylidene vs. methylidene) vs. the metallacyclobutane; and the effect of replacing a phosphine ancillary ligand with a non-nucleophilic donor. From a practical standpoint, Chapter 2 brings new life to metathesis with the high-yield synthesis of the resting state species, Chapters 3 and 4 examine the deactivation, or death, of the methylidene complexes, and Chapter 5 establishes a new paradigm for olefin metathesis within the context of sustainable synthesis.
176

Exploring New Applications of Group 7 Complexes for Catalytic and CO2 Reduction Using Photons or Electrochemistry

Alghamdi, Ahlam January 2016 (has links)
This thesis focuses on the synthesis, characterization and reactivity of group VII transition metal complexes. It begins with exploring a new pincer geometry of Re(I) compounds and then examining both Re(I) and Mn(I) compound as homogenous catalysts for photocatalytic and electrocatalytic reduction of CO2. In the first chapter, I focus on some recently reported approaches to photocatalytic and electrocatalytic reduction of CO2 using homogenous catalysts of transition metal. The second chapter presents efforts to capture Re(I) in a neutral N,N,N pincer scaffold and the resulting enhanced absorption of visible light. Most of these results have appeared in a publication. In this thesis, I only present my work on rhenium compounds that are supported by the bis(imino)pyridine ligand and an examination of the differences in properties between the bidentate and tridentate ligand geometries. Later I examine both tridentate and bidentate complexes for the photocatalytic and electrocatalytic reduction of CO2 to CO. The failure of tridentate Re1 bis(imino)pyridine compounds to reduce CO2 to CO prompted a change in direction to rhenium compounds that are supported with diimine ligands. Thus, I choose 4,5-diazafluoren-9-one as supporting ligand for rhenium and manganese. This chapter explained the reasons behind choosing these particular ligand and metal combinations. ReI and Mn1 compounds of 4,5-diazafluoren-9-one have shown activity for the photocatalytic and electrocatalytic reduction of CO2 to CO. In the fourth chapter, as rhenium and manganese compounds of 4,5-diazafluoren-9-one have shown the great ability of CO2 reduction to CO, the focus here was to modify the ligand by attaching a photosensitizer to the ligand in order to prepare supramolecular complexes that may increase the efficiency and yield of reduction products. In this chapter, I examined two types of the photosensitizer; tris(bipyridine)ruthenium(II)chloride and osmium dichloro bis(4,​4'-​dimethyl-​2,​2'-​bipyridine).
177

A Mechanistic Approach Towards the Discovery of Catalytic Acylation Reactions

Zhang, Wanying January 2017 (has links)
The development of new, efficient methods for the formation of carbon-carbon bonds using transition metal catalysis has broad applications in the field of organic chemistry and is the key to efficient chemical synthesis. Many efforts had been made to develop efficient ways to make these linkages particularly with the aid of metals such as Rh, Pd, Ni, Ru and Cu. Our group is primarily focused on exploring how these transition metals can activate typically inert functional groups, paving way to new synthetic routes to construct more complex molecules. Chapter 1 describes attempts that were conducted to achieve hydroacylation between an aldehyde and a non-conjugated alkene via a metal hydride intermediate. The use of RuHCl(CO)(PPh3)3 proved to be the most efficient catalyst for this transformation thus far. Mechanistic investigations were conducted to explore different possibilities to enable this transformation. This chapter also identifies a new self-aldol domino reaction, which consists of a self-aldol condensation of an aldehyde, followed by oxidation and decarbonylation giving rise to a ketone product. Finally, the use of a simple and direct method to access deuterated aldehydes using RuHCl(CO)(PPh3)3 as a catalyst and D2O as a deuterium source is outlined. Chapter 2 describes a novel Suzuki-Miyaura system that couples esters and boronic esters to form the corresponding ketone product. It was found that an NHC-based Pd catalyst is crucial in the transformation wherein it activates the C(acyl)-O bond of the ester. It is notable that this transformation takes place with the absence of decarbonylation. Reactivity under water in the presence of surfactants was also discovered. Results in aqueous media were demonstrated to be milder than in organic conditions, while achieving similar yields. This system was also applied to coupling of esters and anilines.
178

Intensification of methane dehydroaromatization process on catalytic reactors

Zanón González, Raquel 19 June 2017 (has links)
The present thesis has focused on the intensive study of the methane dehydroaromatization process under non-oxidative conditions for producing benzene and H2 in a direct way. Nevertheless, MDA process is thermodynamically limited and, moreover, the catalyst quickly accumulates large amounts of carbonaceous deposits, which hinders its commercialization. Therefore, this thesis has as fundamental purposes the improvement of the catalytic activity and the stability of the catalyst on MDA reaction. The catalysts widely used on MDA reaction are Mo/zeolite, which are bifunctional, i.e., Mo sites are involved in the methane dehydrogenation and formation of CHx species, which are dimirized to C2Hy species, and Brønsted acid sites of the zeolite oligomerize these C2Hy species, forming mostly benzene and naphthalene. Thereby, different Mo/zeolite catalysts were prepared using commercial zeolites as well as zeolites synthesized on the laboratory. Thus, observing that the zeolite and the Mo content employed on the catalyst affected significantly the MDA performance. The topology and the channel dimensions of the zeolite as well as its Si/Al ratio and crystal size were also important on the MDA results obtained. Concretely, the best MDA performance was achieved by the 6%Mo/MCM-22 catalyst. Different catalyst activation procedures were tested, achieving the best MDA performance and catalyst stability using a gas mixture of CH4:H2, 1:4 (vol. ratio) during 1 h up to 700 ºC and maintaining this temperature for 2 h. This catalyst activation leads to the pre-carburization and pre-reduction of the Mo species, obtaining the most active and stable on MDA reaction. Moreover, the effect of the space velocity was studied in the present thesis. The best MDA results were reached at 1500 mL¿h-1¿gcat-1, as at higher space velocities methane barely can interact with the catalytic sites. While at lower space velocities the condensation of the heavy aromatic hydrocarbons is facilitated, causing higher coke accumulation on the catalyst. Furthermore, higher catalyst stability was obtained by co-feeding H2O, H2 and CO2 separately using the 6%Mo/HZSM-5 catalyst as well as the 6%Mo/MCM-22, due to the partial suppression of coke deposited. However, the catalytic activity was worsen by adding these co-reactants because of, on one hand, thermodynamically the addition of H2O, H2 or CO2 to the methane feed is detrimental and, on the other hand, H2O and CO2 partially re-oxidize the Mo species of the catalyst. Thermodynamically, H2 causes an equilibrium shift and, therefore, a decrease on the methane conversion; H2O favors the methane reforming reaction and coke gasification; and CO2 promotes the methane reforming reaction and the reverse Boudart reaction. The development and implementation of a catalytic membrane reactor (CMR) that integrates the 6%Mo/MCM-22 catalyst and the BZCY72 tubular membrane has been carried out on the present thesis. The MDA performance and the stability of the catalyst were exceptionally improved using this CMR by imposing a current to the electrochemical cell, changing or not the standard operating conditions. These good results were obtained due to the simultaneous H2 removal from MDA reaction side and O2 injection to this side through the BZCY72 tubular membrane. Thus, the H2 extraction results in the thermodynamic equilibrium displacement of MDA reaction, which causes the increase of the methane conversion and in turn of the aromatics yield. Moreover, the O2 injection involves the formation of H2O in low concentration, which reacts with coke accumulated (coke gasification), rising the stability of the catalyst. / La presente tesis se ha centrado en el estudio intensivo del proceso de deshidroaromatización de metano en condiciones no oxidativas para producir benceno e hidrógeno de forma directa. Sin embargo, el proceso de MDA está limitado termodinámicamente y, además, el catalizador acumula rápidamente grandes cantidades de depósitos carbonosos, lo que dificulta su comercialización. Por tanto, esta tesis tiene como objetivos fundamentales la mejora de la actividad catalítica y la estabilidad del catalizador en la reacción MDA. Los catalizadores Mo/zeolita son ampliamente utilizados en la reacción MDA, los cuales son bifuncionales, es decir, los sitios de Mo están involucrados en la deshidrogenación del metano y la formación de las especies CHx, las cuales se dimerizan a especies C2Hy, y los sitios ácidos de Brønsted de la zeolita oligomerizan éstas especies C2Hy, formando principalmente benceno y naftaleno. Por lo que, diferentes catalizadores Mo/zeolita se prepararon utilizando zeolitas tanto comerciales como sintetizadas en el laboratorio. Observando así que la zeolita y el contenido de Mo utilizados en el catalizador afectan significativamente el rendimiento de la reacción MDA. Tanto la topología y las dimensiones de los canales de la zeolita como su relación Si/Al y su tamaño de cristal son también importantes en los resultados obtenidos de la reacción MDA. Concretamente, el mejor rendimiento de MDA fue obtenido por el catalizador 6%Mo/MCM-22. Se probaron diferentes procedimientos de activación del catalizador, obteniendo el mejor rendimiento de la reacción MDA y estabilidad del catalizador usando una mezcla gaseosa de CH4:H2, 1:4 (relación en volumen) durante 1 h hasta 700 ºC y manteniendo esta temperatura durante 2 h. Esta activación del catalizador provoca la pre-carburización y pre-reducción de las especies de Mo, obteniendo las más activas y estables en la reacción de MDA. Los mejores resultados de MDA se obtuvieron con 1500 mL¿h-1¿gcat-1, ya que con mayores velocidades espaciales el metano apenas puede interaccionar con los sitios catalíticos. Mientras que con menores velocidades espaciales la condensación de los hidrocarburos aromáticos pesados se ve favorecida, provocando una mayor acumulación de coque en el catalizador. Por otra parte, co-alimentando H2O, H2 y CO2 por separado se obtuvo una mayor estabilidad tanto del catalizador 6%Mo/HZSM-5 como del 6%Mo/MCM-22, debido a la supresión parcial del coque depositado. Sin embargo, la actividad catalítica empeoró al añadir estos co-reactivos ya que, por un lado, la adición de H2O, H2 y CO2 a la alimentación de metano es perjudicial termodinámicamente y, por otro lado, el H2O y el CO2 re-oxidan parcialmente las especies Mo del catalizador. Termodinámicamente, el H2 provoca un cambio en el equilibrio y, por tanto, una disminución de la conversión de metano; el H2O favorece la reacción de reformado de metano y la gasificación de coque; y el CO2 promueve la reacción de reformado de metano y la reacción inversa de Boudart. En la presente tesis se ha llevado a cabo el desarrollo y la implementación de un reactor catalítico de membrana (CMR) que integra el catalizador 6%Mo/MCM-22 y la membrana tubular BZCY72. El rendimiento de la reacción MDA y la estabilidad del catalizador fueron excepcionalmente mejorados usando este CMR imponiendo una corriente a la celda electroquímica, cambiando o no las condiciones de operación estándar. Estos buenos resultados fueron obtenidos debido a la simultánea extracción de H2 del lado de reacción y la inyección de O2 a este lado mediante la membrana tubular BZCY72. Así, la extracción de H2 se traduce en un desplazamiento del equilibrio termodinámico de la reacción MDA, lo que causa el aumento de la conversion de metano y a su vez del rendimiento de aromáticos. Además, la inyección de O2 implica la formación de agua en baja concentración, la que reacciona con el coque acumulado (gas / La present tesi s'ha centrat en l'estudi intensiu del procés de deshidroaromatització de metà en condicions no oxidatives per produir benzé i hidrogen de forma directa. No obstant això, el procés de MDA està limitat termodinàmicament i, a més, el catalitzador acumula ràpidament grans quantitats de dipòsits carbonosos, el que dificulta la seva comercialització. Per tant, aquesta tesi té com a objectius fonamentals la millora de l'activitat catalítica i l'estabilitat del catalitzador en la reacció MDA. Els catalitzadors Mo/zeolita són àmpliament utilitzats en la reacció MDA, els quals són bifuncionals, és a dir, els llocs de Mo estan involucrats en la deshidrogenació del metà i la formació de les espècies CHx, les quals es dimeritzen a espècies C2Hy, i els llocs àcids de Brønsted de la zeolita oligomeritzan aquestes espècies C2Hy, formant principalment benzè i naftalè. Per tant, diferents catalitzadors Mo/zeolita es van preparar utilitzant zeolites tant comercials com sintetitzades al laboratori. Observant així que la zeolita i el contingut de Mo utilitzats en el catalitzador afecten significativament el rendiment de la reacció MDA. Tant la topologia i les dimensions dels canals de la zeolita com la seva relació Si/Al i el seu tamany de cristall són també importants en els resultats obtinguts de la reacció MDA. Concretament, el millor rendiment de MDA va ser obtingut pel catalitzador 6%Mo/MCM-22. Es van provar diferents procediments d'activació del catalitzador, obtenint el millor rendiment de la reacció MDA i estabilitat del catalitzador usant una mescla de gasos de CH4: H2, 1: 4 (relació en volum) durant 1 h fins a 700 ºC i mantenint aquesta temperatura durant 2 h. Aquesta activació del catalitzador provoca la pre-carburització i pre-reducció de les espècies de Mo, obtenint les més actives i estables en la reacció de MDA. A més, en la present tesi es va estudiar l'efecte de la velocitat espacial. Els millors resultats de MDA es van obtindre amb 1500 mL¿h-1¿gcat-1, ja que amb majors velocitats espacials el metà gairebé no pot interaccionar amb els llocs catalítics. Mentre que amb menors velocitats espacials la condensació dels hidrocarburs aromàtics pesants es veu afavorida, provocant una major acumulació de coc en el catalitzador. D'altra banda, co-alimentant H2O, H2 i CO2 per separat es va obtindre una major estabilitat tant del catalitzador 6%Mo/HZSM-5 com del 6%Mo/MCM-22, a causa de la supressió parcial del coc dipositat. No obstant això, l'activitat catalítica empitjorà en afegir aquests co-reactius ja que, d'una banda, l'addició d'H2O, H2 i CO2 a l'alimentació de metà és perjudicial termodinàmicament i, d'altra banda, el H2O i el CO2 re-oxiden parcialment les espècies Mo del catalitzador. Termodinàmicament, el H2 provoca un canvi en l'equilibri i, per tant, una disminució de la conversió de metà; l'H2O afavoreix la reacció de reformat de metà i la gasificació de coc; i el CO2 promou la reacció de reformat de metà i la reacció inversa de Boudart. En la present tesi s'ha dut a terme el desenvolupament i la implementació d'un reactor catalític de membrana (CMR) que integra el catalitzador 6%Mo/MCM-22 i la membrana tubular BZCY72. El rendiment de la reacció MDA i l'estabilitat del catalitzador van ser excepcionalment millorats usant aquest CMR imposant un corrent a la cel¿la electroquímica, canviant o no les condicions d'operació estàndard. Aquests bons resultats van ser obtinguts a causa de la simultània extracció d'H2 del costat de reacció i la injecció d'O2 a aquest costat per mitjà de la membrana tubular BZCY72. Així, l'extracció d'H2 es tradueix en un desplaçament de l'equilibri termodinàmic de la reacció MDA, el que causa l'augment de la conversió de metà i alhora del rendiment d'aromàtics. A més, la injecció d'O2 implica la formació d'aigua en baixa concentració, la qual reacciona amb el coc acumulat (gasificació de coc) / Zanón González, R. (2017). Intensification of methane dehydroaromatization process on catalytic reactors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/83124 / TESIS
179

Purification of Cyclohexene for Cyclopropanation Reactions

Adesina, Olumide, Eagle, Cassandra T, Olukanni, Ayobami, Mohseni, Reza 12 April 2019 (has links)
Environmentally friendly reactions yielding cis-cyclopropanes are desired in the insecticide industry as these are most effective at reducing the population of insects while remaining benign to the environment. We are exploring the best parameters for the most effective cis-cyclopropanation reactions. An alkene and a diazo compound react together in the presence of a dirhodium catalyst to produce cyclopropanes. First however, the starting materials must be pure. Alfa Aesar supplies cyclohexene which is reported to be 99% pure, however, Gas column chromatography/Mass spectroscopy reveals that the sample is only 3% cyclohexene. Using an adopted published procedure, we discovered that distillation under nitrogen produces cyclohexene in greater than 95% pure. This is suitable for use in cyclopropanation reactions.
180

Purification of Ethyl Diazoacetate by Vacuum Distillation for use in Cyclopropanation Reactions

Olukanni, Ayobami, Eagle, Cassandra T, Adesina, olumide, Mohseni, Reza M. 12 April 2019 (has links)
Environmentally friendly insecticides have long been desired in the production of food. Pyrethiod compounds not only decompose under light and heat, but they are highly toxic to insects while having effectively no toxicity to mammals. The cis-cyclopropane ring in pyrethiod insecticides is the most challenging component to synthesize. We are exploring the best parameters for the most effective cis-Cyclopropanation reactions. An alkene and a diazo compound react together in the presence of a dirhodium catalyst to produce cyclopropanes. First however, the starting materials must be pure. My part of the project is to purify ethyl diazoacetate(EDA). Column chromatography has been used, but yielded no fraction containing EDA as determined by Gas chromatography/Mass spectrometry. Extraction of EDA with sodium carbonate solution yielded similar results. Thus, I turned to distillation at reduced pressure. This method produced EDA in high enough purity to be used in cyclopropanation reactions. The purity of EDA was determined by H-1 nuclear magnetic resonance spectroscopy.

Page generated in 0.3395 seconds