• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon Nanotube Devices / Bauelemente aus Kohlenstoff-Nanoröhren

Seidel, Robert Viktor 01 January 2005 (has links) (PDF)
Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
2

Carbon Nanotube Devices

Seidel, Robert Viktor 20 December 2004 (has links)
Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
3

Synthèse et transport électronique dans des nanotubes de carbone ultra-propres / Synthesis and electrical transport of ultra-clean carbon nanotubes

Nguyen, Ngoc Viet 25 October 2012 (has links)
Cette thèse décrit des expériences sur la synthèse de nanotubes de carbone (CNT) mono-paroi, leur intégration dans des dispositifs ultra-propres, ainsi que l'étude de leurs propriétés électroniques par des mesures de transport à très basse température. La première partie de ce travail décrit l'optimisation des paramètres de synthèse par déposition chimique en phase vapeur (CVD) tels que les précurseurs de carbone, les flux de gaz, la température, ou le catalyseur pour la croissance de CNT de très bonne qualité. Parmis tous ces paramètres, la composition du catalyseur joue un rôle decisif pour permettre une croissance sélective en mono-paroi ansi qu'une distribution de faible diamètre. Dans la deuxième partie nous développons la nanofabrication de boites quantiques ultra-propres à base de CNT ainsi que les mesures de transport de ces échantillons à basse température (40 mK). Le spectre de la première couche électronique du nanotube est mesuré par spectroscopie de cotunneling inélastique sous champ magnétique, montrant alors un fort couplage spin-orbite négatif, dans ce système. Nous montrons que la séquence de remplissage d'électrons dans notre cas (ΔSO < 0) est différente de celle que l'on obtiendrait en régime Kondo SU (4) (ΔSO = 0). En effet, un effet Kondo purement orbital est observé pour N =2e à champ magnétique fini. Dans la dernière partie de cette thèse, nous décrivons la mise en œuvre expérimentale d'un évaporateur thermique à aimants à molécule unique (SMM) pour la fabrication future de dispositifs hybrides CNT-SMM ultra-propres. / This thesis describes experiments on the synthesis of single wall carbon nanotubes (SWNTs), fabrication of ultra-clean CNT devices, and study of electronic properties of CNTs with transport measurements. The first part of this work describes the optimization of the synthesis parameters (by chemical vapor deposition - CVD) such as carbon precursor, gas flows, temperature, catalyst for the growth of high quality SWNTs. In all these parameters, the catalyst composition plays a very important role on the high selective growth of SWNTs with a narrow diameter distribution. The second part deals with the nanofabrication of ultra-clean CNT devices and the low temperature (40 mK) transport measurements of these CNT quantum dots. The level spectra of the electrons in the first shell are investigated using inelastic cotunneling spectroscopy in an axial magnetic field, which shows a strong negative spin-orbit coupling of electron. We find that the sequence of electron shell filling in our case (ΔSO < 0) is different from which would be obtained in the pure SU(4) Kondo regime (ΔSO = 0). Indeed, a pure orbital Kondo effect is observed in N=2e at a finite magnetic field. In the last part of this thesis, we describe the experimental implementation of the thermal evaporation of single-molecule magnet (SMM) for the future fabrication of ultra-clean CNT-SMM hybrid devices.
4

A Theoretical Study: The Connection between Stability of Single-Walled Carbon Nanotubes and Observed Products / En Teoretisk Studie: Sambandet mellan Stabiliteten for Enkelväggiga Kolnanorör och Observerade Produkter

Hedman, Daniel January 2017 (has links)
Over the past 20 years’ researchers have tried to utilize the remarkable properties of single-walled carbon nanotubes (SWCNTs) to create new high-tech materials and devices, such as strong light-weight composites, efficient electrical wires and super-fast transistors. But the mass production of these materials and devices are still hampered by the poor uniformity of the produced SWCNTs. These are hollow cylindrical tubes of carbon where the atomic structure of the tube wall consists of just a single atomic layer of carbon atoms arranged in a hexagonal grid. For a SWCNT the orientation of the hexagonal grid making up the tube wall is what determines its properties, this orientation is known as the chirality of a SWCNT. As an example, tubes with certain chiralities will be electrically conductive while others having different chiralities will be semiconducting. Today’s large scale methods for producing SWCNTs, commonly known as growth of SWCNTs, gives products with a large spread of different chiralities. A mixture of chiralities will give products with a mixture of different properties. This is one of the major problems holding back the use of SWCNTs in future materials and devices. The ultimate goal is to achieve growth where the resulting product is uniform, meaning that all of the SWCNTs have the same chirality, a process termed chirality-specific growth. To achieve chirality-specific growth of SWCNTs requires us to obtain a better fundamental understanding about how they grow, both from an experimental and a theoretical point of view. This work focuses on theoretical studies of SWCNT properties and how they relate to the growth process, thereby giving us vital new information about how SWCNTs grow and taking us ever closer to achieving the ultimate goal of chirality-specific growth. In this thesis, an introduction to the field is given and the current state of the art experiments focusing on chirality-specific growth of SWCNTs are presented. A brief review of the current theoretical works and computer simulations related to growth of SWCNTs is also presented. The results presented in this thesis are obtained using first principle density functional theory. The first study shows a correlation between the stability of SWCNT-fragments and the observed products from experiments. Calculations confirm that in 84% of the investigated cases the chirality of experimental products matches the chirality of the most stable SWCNT-fragments (within 0.2 eV). Further theoretical calculations also reveal a previously unknown link between the stability of SWCNT-fragments and their length. The calculations show that at specific SWCNT-fragment lengths the most stable chirality changes. Thus, introducing the concept of a switching length for SWCNT stability. How these new results link to the existing understanding of SWCNT growth is discussed at the end of the thesis.
5

Fizičko-hemijske i katalitičke osobine ugljeničnih nanocevi sintetisanih metodom katalitičke hemijske depozicije iz gasne faze – korelacija sa osobinama primenjenih katalizatora na bazi prelaznih metala (Fe, Co, Ni) / Physico-chemical and catalytic properties of carbon nanotubes synthesized by catalytic chemical vapor deposition - correlation with the properties of the applied catalysts based ontransition metals (Fe, Co, Ni)

Panić Sanja 31 October 2014 (has links)
<p>Postojanje ugljeničnih nanocevi (UNC), kao jedne od brojnih alotropskih modifikacija ugljenika, zabeleženo je jo&scaron; pre vi&scaron;e od pola veka. Međutim, do prave eksplozije<br />interesovanja za ovu vrstu nanomaterijala je do&scaron;lo tek 1991. godine kada ih je &quot;ponovo&quot; otkrio japanski naučnik S. Iijima. Od tada, zbog svojih izuzetnih fizičko-hemijskih osobina, UNC počinju da privlače pažnju naučne javnosti i spajaju istraživače iz različitih oblasti sa zajedničkim imeniteljem - nanotehnologija. Otkriće UNC je u znatnoj meri omogućilo razvoj visoke tehnologije u oblastima kao &scaron;to su elektronika, optika, kompozitni materijali, kataliza, za&scaron;tita životne sredine, itd. Danas, primena nanocevi sve vi&scaron;e doprinosi lak&scaron;oj implementaciji principa održivog razvoja u pomenute oblasti. Kataliza je polje od dvostrukog interesa, jer je jedan od načina dobijanja UNC upravo katalitički, a osim toga i same cevi su interesantne kao nosač novog katalizatora.<br />Istraživanje čiji su rezultati prikazani u okviru ove doktorske disertacije je obuhvatilo vi&scaron;e oblasti proučavanja UNC, počev&scaron;i od razvoja metode za njihovu sintezu, preko preči&scaron;ćavanja i funkcionalizacije finalnog proizvoda, pa do primene nanocevi u dva procesa od značaja za oblast za&scaron;tite životne sredine.</p><p>Razvoj katalitičke metode sinteze UNC započet je primenom vertikalnog cevnog kvarcnog reaktora, iz CO i CH4 kao izvora ugljenika, pri čemu su u reakciji testirani<br />monometalni katalizatori na bazi Fe, Co i Ni na Al2O3 kao nosaču (I serija katalizatora). Rezultati ovih preliminarnih eksperimenata su pokazali malu aktivnost I serije monometalnih katalizatora, &scaron;to se može pripisati, kako neadekvatnoj hidrodinamici reaktora i lo&scaron;e odabranim reakcionim parametrima, tako i neodgovarajućoj veličini katalitičkih čestica i načina njihovog pakovanja u vertikalnom<br />reaktoru. Shodno tome, u cilju postizanja boljeg prinosa nanocevi, dalji eksperimenti sinteze izvedeni su u horizontalnom reaktoru u struji C2H4 i u prisustvu II serije<br />monometalnih katalizatora sa Al2O3 i SiO2 kao nosačima, koji se u odnosu na I seriju razlikuju po udelu aktivne faze i veličini čestica katalizatora (pra&scaron;kast oblik). Katalizatori II serije su pokazali zadovoljavajuću aktivnost u reakciji sinteze UNC, a rezultati karakterizacije dobijenih uzoraka nanocevi ukazuju na različit uticaj nosača katalizatora na morfologiju sintetisanih nanocevi. Shodno ostvarenom prinosu ugljenika, a u cilju optimizacije reakcionih parametara, katalizator na bazi Fe sa SiO2 kao nosačem je odabran kao reprezentativan za ispitivanje uticaja vremena trajanja sinteze UNC, kao i zapreminskog udela C2H4 u sme&scaron;i sa azotom, na prinos<br />nanocevi i selektivnost procesa.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Optimizacija reakcionih uslova je u daljoj fazi rada dovela do uvođenja bimetalnih katalizatora sa istim tradicionalnim nosačima &ndash; Al2O3 i SiO2. Najveći prinos ugljenika ostvaren je na katalizatorima sa Fe i Co kao aktivnom fazom, bez obzira na vrstu nosača. UNC sintetisane na pomenutim katalizatorima su karakterisane u cilju<br />ispitivanja uticaja primenjenih nosača na njihove fizičkohemijske osobine, pa je shodno tome i predložen vr&scaron;ni mehanizam njihovog rasta. Rezultati ispitivanja kvaliteta sintetisanih UNC su ukazali da primena SiO2, kao nosača katalizatora, za razliku od Al2O3, favorizuje rast UNC boljeg povr&scaron;inskog i ukupnog kvaliteta. S obzirom na raznolikost mogućnosti primene UNC, istraživanja u tom smeru zahtevaju čiste UNC, pa su shodno tome proizvodi sinteze preči&scaron;ćeni metodom tečne oksidacije. Rezultati fizičko-hemijske karakterizacije preči&scaron;ćenih UNC su ukazali na efikasnost primenjene metode sa aspekta uklanjanja prisutnog katalizatora, ali i na njen različit uticaj na strukturu, odnosno kvalitet preči&scaron;ćenih uzoraka. Kao posledica promena unutar strukture UNC, kao i različitog stepena njihove funkcionalizacije, ukupni kvalitet preči&scaron;ćenih nanocevi je, u zavisnosti od primenjenog nosača katalizatora, promenjen u odnosu na odgovarajuće nepreči&scaron;ćene uzorke.<br />Poslednjih godina se posebna pažnja poklanja nanomaterijalima koji se mogu primeniti za uklanjanje različitih polutanata iz životne sredine, kako u funkciji adsorbenata, tako i u funkciji katalizatora. U okviru ove doktorske disertacije obuhvaćena je primena UNC kao adsorbenta za uklanjanje insekticida tiametoksama iz vode, kao i njihova primena kao nosača katalizatora u reakciji<br />denitracije vode. Rezultati eksperimenata adsorpcije su pokazali da UNC, prethodno tretirane u ccHNO3, predstavljaju dobar adsorbent za uklanjanje insekticida tiametoksama iz vodenog rastvora. Odabir procesnih parametara za proučavanje kinetike adsorpcije, adsorpcione ravnoteže, kao i termodinamike procesa izvr&scaron;en je primenom frakcionog faktorskog dizajna na dva nivoa, 5 1 V 2 , a dobijeni rezultati su ukazali da je pomenuti proces adsorpcije spontan i kontrolisan uglavnom unutra&scaron;njom difuzijom molekula insekticida u mezopore uzorka UNC. Performanse katalizatora sa UNC kao nosačem su testirane u reakciji katalitičke denitracije, pri čemu su dobijeni rezultati pokazali da se novoformirani katalizator karakteri&scaron;e zadovoljavajućom disperzno&scaron;ću sa udelombimetalnih Pd-Cu nanočestica koje omogućavaju 60% konverzije nitratnog jona.</p> / <p style="text-align: justify;">The existance of carbon nanotubes (CNTs), as one of the carbon allotropes, was noted over half century ago. However, the true interest for these nanomaterials appeared at 1991, when they were &quot;redescovered&quot; by Japanese scientist S. Iijima. Since then, due to their unique physico-chemical properties, CNTs begin to attract attention of the scientific community and to gather researchers from different areas within the common field of interest &ndash; nanotechnology. The CNTs discovery substantially enabled the high technology development in the fields such as electronics, optics, composite materials, catalysis, environmental protection, etc. Nowdays, the application of nanotubes is increasingly contributing to easier implementation of sustainable development principles in the above mentioned areas. Catalysis is the field of double interest &ndash; one of the CNTs synthesis method is catalytical, and the nanotubes can also be used as the support of the new catalyst.<br />The research, which results are shown within this PhD Thesis, includes few different CNTs research fields, starting from the synthesis method development, over the purification and functionalization of the final product, to the application of<br />nanotubes in two processes of significance for the field of environmental protection.<br />The development of the CNTs catalytic synthesis method was started by the use of vertical quartz tube reactor, in the flow of CO and CH4 as the carbon source, and in the presence of monometallic catalysts based on Fe, Co and Ni at Al2O3 as the support (the first series of catalysts). The results of these preliminary experiments have shown the low activity of these monometallic catalysts, which can be attributed to the inadequate reactor hydrodynamics and selected reaction parameters, as well as the inadequate size of the catalytic particles and the type of their packing in the vertical reactor. Consequently, in order to achieve the higher nanotubes yield, further synthesis experiments were carried out in a horizontal reactor in the flow of C2H4 as the carbon source, and in the presence of the second series of monometallic catalysts with Al2O3 and SiO2 as the supports. The catalysts of the second series have shown satisfactory activity in the CNTs synthesis reaction, and the results of the obtained samples characterization idicate a different influence of the catalyst support on the synthesized CNTs morphology. In order to optimize the reaction parameters, Fe/SiO2 catalyst was chosen as a representative to examine the effect of the CNTs synthesis duration, as well as the volume percentage of C2H4 in the mixture with nitrogen to the CNTs yield and process selectivity. In a further phase of work, the optimization of thereaction parameters led to the introduction of the bimetallic catalysts with the same traditional supports, Al2O3 and SiO2. The highest carbon yield was achieved over Fe, Co based catalysts, regardless of the type of the catalyst support. CNTs synthesized over the above mentioned catalysts were characterized in order to study the effect of the used supports on their physico-chemical properties, and consequently the CNTs tip growth mechanism was proposed. The results of quality examination of the synthesized CNTs showed that the use of SiO2, as a catalyst support, unlike Al2O3, favors the growth of nanotubes of better surface and overall crystalline quality. In view of the diversity of possible CNTs applications, investigation in that direction requires purified CNTs and accordingly the final CNTs products were purified by liquid oxidation method. The results of physico-chemical characterization of the purified CNTs showed that the applied purification method was effective in terms of removing the present catalyst, but on the other hand it had different influence on the structure and quality of the purified samples. As a consequence of CNTs structural changes, as well as their different degree of functionalization, the overall crystalline quality of the purified nanotubes, originating from different catalyst supports, was changed in comparison to the corresponding unpurified samples. Over the past few years, special attention was focused on<br />nanomaterials that can be applied as adsorbents or catalysts for the removal of various pollutants from the environment. This PhD Thesis considers the use of CNTs, as adsorbent, for the removal of insecticide thiamethoxam from water, as well as their use as catalyst support for water denitration reaction. The results of adsorption experiments have shown that the CNTs, pretreated in ccHNO3, represent a good adsorbent for the removal of thiamethoxam from the aqueous solutions. The<br />selection of the process parameters in order to study the adsorption kinetics and equilibrium, as well as the thermodynamics of the process, was conducted using the<br />fractional factorial design at two levels, 5 1 V 2 . The obtained results showed that the adsorption process is spontaneous and controlled mainly by an internal diffusion of molecules of insecticide in the mesopores of CNTs. The performance of the catalyst with the CNTs as the support were tested in catalytic water denitration reaction, whereby the results showed that the newly formed catalyst is characterized by satisfactory dispersion of Pd-Cu bimetallic nanoparticles which enable the 60% conversion of nitrate ions.</p>
6

Investigation of multicomponent catalyst systems for type-selective growth of SWCNTs by CVD

Motaragheb Jafarpour, Saeed 25 February 2020 (has links)
Excellent electronic properties of semiconducting single-walled carbon nanotubes (sc-SWCNTs) motivated the investigation for using them in different application areas such as microelectronics, sensorics, MEMS and MOEMS. However, challenges arise from the lack of selectivity with respect to electronic type and chirality as well as ensuring high quality, high purity and well-aligned SWCNTs during fabrication process. Catalytic chemical vapour deposition (CCVD) has shown great potential in direct synthesis of high quality SWCNTs with chiral or type selectivity. This thesis addresses three important aspects for growth of sc-SWCNT covering method development for fast screening for complex catalyst systems, process development for type-selective growth of SWCNTs and transfer of processes to a specific CVD reactor capable to scale the processes up to 8-inches wafer embedded in the microtechnologic process line. Multi-wavelengths Raman spectroscopy is applied to analyze type and chiral compositions of SWCNTs. In addition, different microscopic techniques of SEM, TEM and AFM are utilized to analyze surface morphology of catalyst layers and size of the nanoparticles as well as structure-related properties of SWCNTs. Initially, systematic studies on monometallic Co and bimetallic Co-Mo systems with different bilayer thickness configurations and their influences on the properties of grown SWCNTs are conducted on chip level. It is shown by adjusting the catalyst deposition conditions of bilayer catalyst as well as optimization of gas environments in CCVD process, structure-related properties of SWCNTs are dramatically enhanced. Furthermore, by utilizing shutter-assisted sputter deposition of gradient layer catalyst, a fast and efficient method for screening different bilayer configurations of Co-Mo, Co-Ru and Ni-Ru has been developed. By utilizing gradient layer deposition with finely resolved catalyst thicknesses, random network SWCNT is grown on bimetallic Co-Mo system under certain process condition with 45% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of long and high quality SWCNT. In contrast, bimetallic Co-Ru system under certain process condition is developed to grow in-plane SWCNT with 85% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of short and low quality SWCNT. In addition, different configurations of the bimetallic Co-Ru system are prepared from salt precursors by spin-coating technique. For a mixture of cobalt (II) chloride and ruthenium (III) nitrosylacetate, random network SWCNT with 70% (at 633 nm) and 95% (at 785 nm) semiconducting enrichment of long SWCNTs with high quality is obtained on wafer level. Random network SWCNT with high degree of semiconducting enrichment is used as channel material for thin-film transistors fabrication that results in CNTFET with on/off ratio in the order of 10*3:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203 / Die hervorragenden elektronischen Eigenschaften von halbleitenden, einwandigen Kohlenstoff-Nanoröhren (sc-SWCNTs haben die Untersuchung dazu veranlasst, sie in verschiedenen Anwendungsbereichen wie der Mikroelektronik, Sensorik, MEMS und MOEMS einzusetzen. Herausforderungen ergeben sich jedoch aus dem Mangel an Selektivität bezüglich elektronischer Bauart und Chiralität sowie der Sicherstellung hoher Qualität, hoher Reinheit und gut aufeinander abgestimmter SWCNTs während des Herstellungsprozesses. Die Katalytische chemische Gasphasenabscheidung (CCVD) zeigt ein großes Potenzial bei der direkten Synthese von hochqualitativen SWCNTs mit Chiraler- oder Typenselektivität. Diese Dissertation behandelt drei wichtige Aspekte für das Wachstum von sc-SWCNT und deckt die Methodenentwicklung des schnellen Screenings für komplexe Katalysatorsysteme, die Prozessentwicklung für das typselektive Wachstum von SWCNTs und die Übertragung von Prozessen in einen spezifischen CVD-Reaktor ab. Der Reaktor, welcher eingebettet in die mikrotechnologische Prozesslinie ist, kann Wafer bis zu 8- Zoll verarbeiten. Raman-Spektroskopie mit mehreren Wellenlängen wird verwendet, um die Zusammensetzung von SWCNTs zu analysieren. Darüber hinaus werden verschiedene mikroskopische Techniken von REM, TEM und AFM verwendet, um die Oberflächenmorphologie von Katalysatorschichten und die Größe der Nanopartikel sowie die strukturbezogenen Eigenschaften von SWCNTs zu analysieren. Zunächst werden systematische Untersuchungen an monometallischen Co- und Bimetall-Co-Mo-Systemen mit unterschiedlichen Doppelschichtdickenkonfigurationen durchgeführt und deren Einfluss auf die Eigenschaften gewachsener SWCNTs auf Chipebene untersucht. Es wird gezeigt, dass durch Einstellung der Katalysatorabscheidungsbedingungen des Doppelschichtkatalysators sowie durch Optimierung der Gasumgebung im CCVD-Prozess die strukturbezogenen Eigenschaften von SWCNTs drastisch verbessert werden können. Darüber hinaus wurde durch die Verwendung eines Gradientenschichtkatalysators, welcher mittels einer Shutter-unterstützten Zerstäubungsabscheidung hergestellt wurde, ein schnelles und effizientes Verfahren zum Untersuchen verschiedener Doppelschichtkonfigurationen von Co-Mo, Co-Ru und Ni-Ru entwickelt. Unter Verwendung der Abscheidung einer Gradientenschicht mit einer fein aufgelösten Katalysatordicke wurden ungerichtete SWCNTs auf einem bimetallischen Co-Mo-System unter definierten Prozessbedingungen mit 45% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von langem und hochwertigem SWCNT gezüchtet. Im Gegensatz dazu wird das bimetallische Co-Ru-System unter definierten Prozessbedingungen entwickelt, um SWCNT in der Ebene mit 85% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von kurzer und geringer Qualität von SWCNT zu wachsen. Außerdem werden verschiedene Konfigurationen des Bimetall-Co-Ru-Systems aus Salzvorläufern durch Spin-Coating-Technik hergestellt. Es zeigt sich für die Bimetallkonfiguration, die durch Mischung von Cobalt (II) -chlorid und Ruthenium (III) -nitrosylacetat, ein zufälliges Netzwerk SWCNT zu 70% (bei 633 nm) und 95% (bei 785 nm) halbleitender Anreicherung langer SWCNTs mit hohem Anteil hergestellt wurde Qualität wird auf Waferebene gewachsen. Ein zufälliges Netzwerk-SWCNT mit einem hohen Grad an halbleitender Anreicherung wird als Kanalmaterial für die Herstellung von Dünnschichttransistoren verwendet, was zu einem CNTFET mit einem Ein / Aus-Verhältnis um 10*3 führte.:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203

Page generated in 0.1128 seconds