1 |
Experimental Study of a Low-Voltage Pulsed Plasma Thruster for NanosatellitesPatrick M Gresham (12552244) 17 June 2022 (has links)
<p>The commercial CubeSat industry has experienced explosive growth recently, and with falling costs and growing numbers of launch providers, the trend is likely to continue. The scientific missions CubeSats could complete are expanding, and this has resulted in a demand for reliable high specific impulse nanosatellite propulsion systems. Interest in liquid-fed pulsed plasma thrusters (LF-PPTs) to fulfill this role has grown lately. Prior work on a nanosatellite LF-PPT was done in the Purdue Electric Propulsion and Plasma Laboratory, but its high operational voltage and electrode size would be disadvantageous for integration on a CubeSat, which have strict volume limitations and provide only tens of Watts in power at low voltages. This work aims to address those disadvantages and further advance the development of a nanosatellite LF-PPT by reducing the operating voltage and removing long plate electrodes to prevent energy losses on components other than the expelled plasma sheet. Two major objectives are pursued: to construct a coaxial pulsed plasma thruster operating with 10s to 100s of volts and to characterize the temporal evolution of the discharge parameters in this low-voltage operation scenario. </p>
<p>It took three experimental design iterations, all of which used a 260 <em>uF</em> , 400 <em>V</em> film capacitor, to arrive at a functional coaxial pulsed plasma thruster. First, a button gun was tested. It produced a peak current of ~16<em> kA</em>, which serves as the expected maximum for the later experiments. Due to the presence of parasitic arcing, it revealed that electrical lines needed to be removed from vacuum chamber to enable testing at a wide range of pressures. Second, a coaxial PPT was designed, built, and tested. This design confirmed operation at discharge voltages <100 <em>V</em> across the plasma, achieving one of the project’s aims, and produced a peak current of 7.4 <em>kA</em>. However, necessity to better align the cathode and provide an unobstructed camera view for observation of the discharge column attachment to the cathode surface forced additional system redesign. Third, a revised coaxial PPT was built and tested. Using air as a propellant, the discharge generated a peak current of 10.4 <em>kA</em> at a mass flow rate of 2 mgs. The PPT cathode was imaged with an ICCD camera over a wide range of pressures, and the photos indicated “spotless” diffuse arc attachment to the cathode, which serves as evidence to expect low erosion rates. The direct measurements of the cathode erosion rate are planned for future. </p>
|
2 |
LOW ENERGY SURFACE FLASHOVER IGNITOR FOR ELECTRIC PROPULSION SYSTEMSYunping Zhang (13834921) 17 May 2024 (has links)
<p> </p>
<p> </p>
<p>An approach to modify surface flashover of insulators in vacuum by limiting duration of its high-current stage responsible for the damaging effects of a classic flashover was developed. The flashover assembly was made by TorrSeal-gluing copper electrodes (10 x 10 x 0.5 mm) to both side of an alumina ceramic sheet (0.635 mm thick). The modified flashover, referred to as low energy surface flashover (LESF), was achieved by utilization of a high voltage (HV) nanosecond pulser or addition of a resistor in series with the LESF assembly when HV DC was utilized. The duration of LESF was visualized by ICCD fast photography to be 100 – 200 ns accompanying electrical characteristics measurements, which gave insight of a way to control the flashover duration by inserting additional capacitor in parallel with the LESF assembly to increase the stored energy prior to breakdown. The LESF assembly was tested for > 1.5 million consecutive pulses and remained operational, while operation in high energy regime with parallel capacitor (4nF) lead to significant damage after 200 pulses.</p>
<p>The igniting capabilities of LESF assembly was demonstrated via successful triggering of vacuum arc and a prototype pulsed plasma accelerator. The plasma plume propagation speed and angular distribution was measured via Langmuir probes. Efforts were made for temporally resolved spectroscopy measurements. </p>
<p>The LESF assembly was improved by replacing TorrSeal-gluing with direct bonding of copper to alumina ceramic and changing the configuration from parallel plate to coaxial. The improved assembly was demonstrated to be operational throughout and after an extended test of 10 million pulses. A higher resolution ICCD photography revealed finer LESF discharge features including initial bright line across the insulator developing into a double-jet plasma plume propagating at around 10<sup>5</sup>m/s and later-on point-like attachment of the discharge column to the electrodes. The composition of the plasma and erosion pattern on the LESF assembly was studied via SEM/EDX analysis, which supported the predominant ceramic erosion over copper electrodes erosion.</p>
|
3 |
Studium vlivu parametrů na pohyb elektrodových skvrn v modelu zhášecí komory elektrického přístroje / Study of arc root movement in a model of the LV quenching systemFendrych, Martin January 2016 (has links)
Thesis focuses on the basic characteristics of plasma, problems about origin of electrode spots and electrodynamics force acts on the electric arc. In the practical part was realized and produced model of a LV quenching system. Using optical diagnostics was received necessary data to analyze the movement of the electrode spots. The movements of the electrode spots were analyzed in terms of value RMS current passing through the electric arc, value of absolute pressure model in the LV quenching system and distance from each electrode.
|
Page generated in 0.0344 seconds