• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tetrahedral amorphous carbon : deposition, characterisation and electronic properties

Veerasamy, Vijayen S. January 1994 (has links)
No description available.
2

Metal plasma immersion ion implantation and deposition using polymer substrates

Oates, T. W. H January 2003 (has links)
This thesis investigates the application of plasma immersion ion implantation (PIII) to polymers. PIII requires that a high negative potential be applied to the surface of the material while it is immersed in a plasma. This presents a problem for insulating materials such as polymers, since the implanting ions carry charge to the surface, resulting in a charge accumulation that effectively neutralises the applied potential. This causes the plasma sheath at the surface to collapse a short time after the potential is applied. Measurements of the sheath dynamics, including the collapsing sheath, are performed using an electric probe. The results are compared to theoretical models of the plasma sheath based on the Child-Langmuir law for high voltage sheaths. The theoretical model predicts well the sheath dynamics for conductive substrates. For insulating substrates the model can account for the experimental observations if the secondary electron coefficient is modified, justified on the basis of the poly-energetic nature of the implanting ions. If a conductive film is applied to the insulator surface the problem of charge accumulation can be avoided without compromising the effectiveness of PIII. The requirement for the film is that it be conductive, yet transparent to the incident ions. Experimental results are presented which confirm the effectiveness of the method. Theoretical estimates of the surface potential show that a film of the order of 5nm thickness can effectively circumvent the charge accumulation problem. Efforts to produce and characterise such a film form the final two chapters of this thesis. The optimal thickness is determined to be near the percolation threshold, where a marked increase in conductivity occurs. Spectroscopic ellipsometry is shown to be an excellent method to determine the film thickness and percolation threshold non-invasively. Throughout this work cathodic vacuum arcs are used to deposit thin films and as a source of metal plasmas. The design and construction of a pulsed cathodic vacuum arc forms a significant part of this thesis. Investigations of the cathode spots and power supply requirements are presented.
3

Cyber-enabled manufacturing systems (CeMS) : model-based estimation and control of a solidification process

Lopez, Luis Felipe, active 21st century 16 January 2015 (has links)
Vacuum arc remelting is a secondary melting process used to produce a variety of segregation sensitive and reactive metal alloys. The present day VAR practice for superalloys involves, typically, melting electrodes of 17'' into ingots of 20'' in diameter. Even larger diameter forging stock is desirable. However, beyond 20'' ingots of superalloys are increasingly prone to segregation defects if solidification is not adequately controlled. In the past years a new generation of model-based controllers was developed to prevent segregation in VAR by controlling melt rate, or the total amount of power flowing into the liquid pool. These controllers were seen as significant improvements in the industry of remelting processes, but these controllers were still focusing on the melting sub-process and ignoring ingot solidification. Accurate control of the liquid pool profile is expected to result in segregation-free ingots, but unfortunately a controller capable of stabilizing the solidification front in VAR is currently not available. The goal of the proposed research is to develop a cyber-enabled controller for VAR pool depth control that will enhance the capabilities of current technologies. More specifically, the objectives of this research are threefold. Firstly, a control-friendly model is proposed based on a high-fidelity ingot solidification model and is coupled to a thermal model of electrode melting. Secondly, sequential Monte Carlo estimators are proposed to replace the traditional Kalman filter, used in the previous VAR controllers. And finally, a model predictive controller (MPC) is designed based on the proposed reduced-order model. The time-critical characteristics of these methods are studied, and the feasibility of their real-time implementation is reported. / text
4

Implementation of a high-fidelity axisymmetric model in a Vacuum Arc Remelting process

Lopez, Luis Felipe 12 July 2011 (has links)
Vacuum Arc Remelting (VAR) is a secondary process used for homogenization of high-melting-point and oxygen-sensitive materials such as superalloys and titanium alloys. The VAR process is carried out with the aim of melting a large consumable electrode in such a way that the resulting ingot has improved homogeneity. The Specialty Metals Processing Consortium (SMPC) has spent the past 20 years developing technology to improve control over the final ingot remelting and solidification processes to alleviate conditions that lead to the formation of inclusions and segregation. Channel segregates are concentration defects arising during the solidification of large-diameter solute-rich alloys. As manufacturers for turbine engines and generators call for larger ingots, it becomes more difficult to produce them without these defects. If, however, liquid pool depth can be controlled precisely to stabilize the solidification zone in the ingot, we could, in principle, produce larger ingots that are defect free. A problem arises because measurements obtained from the VAR furnace do not give enough information to accurately estimate the liquid pool shape in dynamic melting situations. Also, the solidification process in VAR is extremely complex due to the multiple physical domains present and a high-fidelity model is required to give an accurate description of the dynamic process. The Basic Axisymmetric Remelting (BAR) code was initially developed by Lee Bertram at Sandia National Laboratories as a high-fidelity multi-energy model to describe ingot casting in this system. In this work we present a new strategy to improve the accuracy of the estimates used in the control system. This strategy consists of implementing BAR as a new set of measurements to be used by the estimator. This new strategy was used in tests jointly sponsored by SMPC and Los Alamos National Laboratory (LANL) in February 2011 using a laboratory-scale furnace and alloy 718 electrodes. / text
5

Metal plasma immersion ion implantation and deposition using polymer substrates

Oates, T. W. H January 2003 (has links)
This thesis investigates the application of plasma immersion ion implantation (PIII) to polymers. PIII requires that a high negative potential be applied to the surface of the material while it is immersed in a plasma. This presents a problem for insulating materials such as polymers, since the implanting ions carry charge to the surface, resulting in a charge accumulation that effectively neutralises the applied potential. This causes the plasma sheath at the surface to collapse a short time after the potential is applied. Measurements of the sheath dynamics, including the collapsing sheath, are performed using an electric probe. The results are compared to theoretical models of the plasma sheath based on the Child-Langmuir law for high voltage sheaths. The theoretical model predicts well the sheath dynamics for conductive substrates. For insulating substrates the model can account for the experimental observations if the secondary electron coefficient is modified, justified on the basis of the poly-energetic nature of the implanting ions. If a conductive film is applied to the insulator surface the problem of charge accumulation can be avoided without compromising the effectiveness of PIII. The requirement for the film is that it be conductive, yet transparent to the incident ions. Experimental results are presented which confirm the effectiveness of the method. Theoretical estimates of the surface potential show that a film of the order of 5nm thickness can effectively circumvent the charge accumulation problem. Efforts to produce and characterise such a film form the final two chapters of this thesis. The optimal thickness is determined to be near the percolation threshold, where a marked increase in conductivity occurs. Spectroscopic ellipsometry is shown to be an excellent method to determine the film thickness and percolation threshold non-invasively. Throughout this work cathodic vacuum arcs are used to deposit thin films and as a source of metal plasmas. The design and construction of a pulsed cathodic vacuum arc forms a significant part of this thesis. Investigations of the cathode spots and power supply requirements are presented.
6

Simulation of thermal stresses in vacuum arc remelting process

Wani, Nitin Yashwant January 1995 (has links)
No description available.
7

Design, production, and validation of a vacuum arc thruster for in-orbit proximity operations

Hiemstra, Cornelis Peter January 2022 (has links)
Vacuum arc thrusters offer a relatively simple and cheap form of satellite propulsion, especially suitable for nanosatellites such as CubeSats or even smaller. This thesis focuses on vacuum arc thruster design considering the thruster’s manufacturing, assembly and integration into the spacecraft, and proposes a new anode geometry easing thruster production. Vacuum arc thruster research is traditionally experimental in nature due to a lack of accurate models. This work follows this approach, and studies experimentally the effect of several geometric design parameters on thruster performance. The outcome confrms findings from several papers, and suggests specifc improvements towards existing models for predicting the effect of the thruster’s geometry on its thrust. The chosen experimental approach raised the need for a micro-thrust measurement stand. Two distinct measurement stands have been designed, realized and used to test various thruster prototypes. One test stand is more accurate. However, the other setup allows for considerably faster testing.
8

Avaliação da composição elementar de filmes finos de ligas metálicas depositados por Arco Catódico Filtrado em Vácuo utilizando RBS e EDS quantitativo / Evaluation of the elemental composition of alloy thin films deposited by Filtered Cathodic Vacuum Arc using RBS and quantitative EDS analysis

Oblitas, Raissa Lima de 26 September 2016 (has links)
Devido à relevância de filmes finos, as técnicas que são utilizadas para produzi-los e também para caracteriza-los tem se tornado importante. Neste contexto, foram analisados filmes finos de até 100 nm, de duas ligas metálicas (cromel e alumel), obtidos a partir da deposição por plasma de Arco Catódico Filtrado em Vácuo (Filtered Cathodic Vacuum Arc - FCVA). O objetivo deste projeto foi avaliar a similaridade em composição elementar entre os materiais utilizados para deposição, que operam como cátodos, e os filmes finos depositados, a partir de medições obtidas pela técnica de microanálise quantitativa Energy Dispersive Spectroscopy (EDS). Para comparação entre resultados e apreciação de compatibilidade, foi realizada avaliação estatística considerando o Teste t, no qual a estatística do teste é dada pela Distribuição t de Student, adotando nível de significância de 5%. Os valores obtidos por EDS Quantitativo para os cátodos foram de (em wt%) (90,3 ± 0,5)% de Ni e (9,72 ± 0,19)% de Cr para o cromel e (95,1 ± 0,8)% de Ni, (2,02 ± 0,14)% de Mn, (1,65 ± 0,04)% de Si e (1,15 ± 0,05)% de Al para o alumel. Já para os filmes finos, foram de (90,2 ± 0,5)% de Ni e (9,8 ± 0,5)% de Cr para o cromel e (95,2 ± 0,4)% de Ni, (2,8 ± 0,4)% de Mn, (0,77 ± 0,17)% de Si e (1,08 ± 0,09)% de Al para o Alumel, ambos apresentando compatibilidade com as medidas por Rutherford Backscattering Spectrometry (RBS) - técnica comumente utilizada para este tipo de espécime. Verificou-se que a composição elementar do filme fino de cromel não apresentou diferença significativa com o cátodo da mesma liga. Entretanto, para o filme fino de alumel, houve evidências de diferença significativa com relação ao cátodo, apontada pelo elemento silício. / Due the relevance of thin films, the techniques used to produce and also to characterize them has become important. In this context, it was analyzed thin films up to 100 nm of two alloys (Chromel and Alumel) obtained by plasma deposition using Filtered Cathodic Vacuum Arc (FCVA). The objective of this project was to evaluate the similarity in elemental concentration of the materials used for deposition, which act as cathodes, and the deposited thin films, through measurements obtained by quantitative microanalysis technique Energy Dispersive Spectroscopy (EDS). In order to compare results and compatibility assessment was performed statistical analysis considering the t-test in which the test statistic is given by the Student\'s t - distribution, adopting a significance level of 5%. The values obtained by Quantitative EDS for the cathodes were (in wt%) (90.3 ± 0.5)% of Ni and (9.72 ± 0.19)% of Cr for the Chromel and (95.1 ± 0.8)% of Ni, (2.02 ± 0.14)% of Mn, (1.65 ± 0.04)% of Si and (1.15 ± 0.05)% of Al for the Alumel. As for the thin films, they were (90.2 ± 0.5)% of Ni and (9.8 ± 0.5)% of Cr for the Chromel and (95.2 ± 0.4)% of Ni, (2.8 ± 0.4)% of Mn, (0.77 ± 0.17)% of Si and (1.08 ± 0.09)% for Al Alumel, both featuring compatibility with the measures by Rutherford Backscattering Spectrometry (RBS) - technique commonly used for this type of specimen. It was verified that the elemental concentration of the thin film of Chromel presented no significant difference with the cathode of the same alloy. However, for the Alumel thin film, there was evidence of a significant difference with respect to the cathode, appointed by element Silicon.
9

A method for the characterization of white spots in vacuum-arc remelted superalloys

Viosca, Alan Lee 30 July 2012 (has links)
Vacuum-Arc Remelting (VAR) is an important process for manufacturing Ti- and Ni-based superalloys. Currently, the sources and mechanisms behind microstructural anomalies produced in VAR superalloy ingots are not well understood. In order to help understand formation processes, a method of characterizing specific anomalies in VAR ingots is desired. This paper presents a method of characterizing the composition and morphology of anomalies in VAR alloy ingots using a combination of serial sectioning and X-ray fluorescence (XRF) energy dispersive spectroscopy (EDS) techniques. This process is demonstrated on a dirty white spot from an Alloy 718 sample. The white spot of interest was serial polished and 2-D XRF EDS maps were acquired at each polish depth. The EDS maps were then stacked to form a 3-D representation of the white spot. In addition, SEM and optical microscopy techniques were used to further characterize the composition and morphology of the dirty white spot. The dirty white spot is composed of both Ti-enriched and Nb-depleted regions. The 2-D EDS maps acquired with the XRF equipment provided adequate contrast for creating a 3-D representation of the Ti-rich region of the dirty white spot. However, contrast was not sufficient to create a 3-D representation of the Nb-depleted region. The XRF EDS equipment combined with SEM and optical microscopy techniques provided valuable information about the morphology and composition of the Alloy 718 dirty white spot. It is concluded that this dirty white spot was produced by fall-in from either the crown or shelf regions during the VAR process. / text
10

Cathodic Arc Zinc Oxide for Active Electronic Devices

Elzwawi, Salim Ahmed Ali January 2015 (has links)
The filtered cathodic vacuum arc (FCVA) technique is a well established deposition method for wear resistant mechanical coatings. More recently, this method has attracted attention for growing ZnO based transparent conducting films. However, the potential of FCVA deposition to prepare ZnO layers for electronic devices is largely unexplored. This thesis addresses the use of FCVA deposition for the fabrication of active ZnO based electronic devices. The structural, electrical and optical characteristics of unintentionally doped ZnO films grown on different sapphire substrates were systematically investigated. The potential of FCVA to grow both polar and non-polar ZnO films was demonstrated. The resulting films showed considerable promise for device applications with properties including high transparency(> 90%), moderate intrinsic carrier concentrations (10¹⁷ - 10¹⁹ cm⁻³), electron mobilities up to 110 cm⁻²/Vs, low surface roughness (< 5 nm) and well-structured photoluminescence. Post-growth annealing in oxygen at temperatures up to 800 C produced significant improvements in the electronic and optical properties of these films, due to the formation of larger grains with lower inter-grain potential barriers. Silver oxide (AgOᵪ ) and iridium oxide (IrOᵪ) Schottky diodes fabricated on annealed FCVA ZnO films showed ideality factors as low as 1.20, barrier heights up to 0.85 eV and high sensitivity to ultraviolet light (up to ̴ 10⁻⁵ at -2 V). Transparent and opaque MESFETs fabricated on these films showed well defined field effect characteristics, channel mobilities up to 70 cm⁻²/Vs and insensitivity to 1 mW/cm⁻² visible light. These devices were further subjected to extensive bias and temperature stress tests. MESFET stability appeared to be strongly dependent on Schottky gate type, bias conditions and ZnO film morphology. Positive bias stress of AgOᵪ gated devices resulted in irreversible damage, that is thought to be due to Ag electromigration across the gate interface. Mapping of the surface potential of the ZnO channel material with Kelvin probe force microscopy suggested a strong relationship between the defect density at grain boundaries and both channel mobility and current stability. Interval growth techniques were found to reduce the density of defects at grain boundaries and produced MESFETs with higher current stability. IrOᵪ gated devices showed superior bias stability and temperature resilience from 25 C-195 C.

Page generated in 0.033 seconds