Spelling suggestions: "subject:"caudal"" "subject:"caudales""
1 |
Intervalos de confiança para altos quantis oriundos de distribuições de caudas pesadas / Confidence intervals for high quantiles from heavy-tailed distributions.Montoril, Michel Helcias 10 March 2009 (has links)
Este trabalho tem como objetivo calcular intervalos de confiança para altos quantis oriundos de distribuições de caudas pesadas. Para isso, utilizamos os métodos da aproximação pela distribuição normal, razão de verossimilhanças, {\\it data tilting} e gama generalizada. Obtivemos, através de simulações, que os intervalos calculados a partir do método da gama generalizada apresentam probabilidades de cobertura bem próximas do nível de confiança, com amplitudes médias menores do que os outros três métodos, para dados gerados da distribuição Weibull. Todavia, para dados gerados da distribuição Fréchet, o método da razão de verossimilhanças fornece os melhores intervalos. Aplicamos os métodos utilizados neste trabalho a um conjunto de dados reais, referentes aos pagamentos de indenizações, em reais, de seguros de incêndio, de um determinado grupo de seguradoras no Brasil, no ano de 2003 / In this work, confidence intervals for high quantiles from heavy-tailed distributions were computed. More specifically, four methods, namely, normal approximation method, likelihood ratio method, data tilting method and generalised gamma method are used. A simulation study with data generated from Weibull distribution has shown that the generalised gamma method has better coverage probabilities with the smallest average length intervals. However, from data generated from Fréchet distribution, the likelihood ratio method gives the better intervals. Moreover, the methods used in this work are applied on a real data set from 1758 Brazilian fire claims
|
2 |
Modelos GAS com distribuições estáveis para séries temporais financeiras / Stable GAS models for financial time seriesGomes, Daniel Takata 06 December 2017 (has links)
Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste. / GARCH models with normal and t-Student conditional distributions are widely used for volatility modeling in financial data. However, such distributions may not be suitable for some heavy-tailed and leptokurtic series. The stable distributions may be more adequate to fit such characteristics, as already exploited in the literature. On the other hand, the recently developed GAS (Generalized Autoregressive Score) models are dynamic models in which the updating mechanism of the time-varying parameters is based on the score function (first derivative of the log-likelihood function). This provides the natural direction for updating the parameters, based on the complete density. We propose a new GAS model with symmetric stable distribution for volatility modeling. The model can be interpreted as a generalization of the GARCH models, since the classic gaussian GARCH model is derived from it by using particular choices of the stable distribution and the model structure. There are no closed analytical expressions for general stable densities in most cases, hence its numeric computation and derivatives are detailed for the sake of complete development of the estimation process. The stationarity conditions and the dependence structure of the model are analysed. Simulation studies, as well as an application to real data, are presented for comparisons between the usual models and the proposed model, illustrating the effectiveness of the latter.
|
3 |
Modelos GAS com distribuições estáveis para séries temporais financeiras / Stable GAS models for financial time seriesDaniel Takata Gomes 06 December 2017 (has links)
Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste. / GARCH models with normal and t-Student conditional distributions are widely used for volatility modeling in financial data. However, such distributions may not be suitable for some heavy-tailed and leptokurtic series. The stable distributions may be more adequate to fit such characteristics, as already exploited in the literature. On the other hand, the recently developed GAS (Generalized Autoregressive Score) models are dynamic models in which the updating mechanism of the time-varying parameters is based on the score function (first derivative of the log-likelihood function). This provides the natural direction for updating the parameters, based on the complete density. We propose a new GAS model with symmetric stable distribution for volatility modeling. The model can be interpreted as a generalization of the GARCH models, since the classic gaussian GARCH model is derived from it by using particular choices of the stable distribution and the model structure. There are no closed analytical expressions for general stable densities in most cases, hence its numeric computation and derivatives are detailed for the sake of complete development of the estimation process. The stationarity conditions and the dependence structure of the model are analysed. Simulation studies, as well as an application to real data, are presented for comparisons between the usual models and the proposed model, illustrating the effectiveness of the latter.
|
4 |
Intervalos de confiança para altos quantis oriundos de distribuições de caudas pesadas / Confidence intervals for high quantiles from heavy-tailed distributions.Michel Helcias Montoril 10 March 2009 (has links)
Este trabalho tem como objetivo calcular intervalos de confiança para altos quantis oriundos de distribuições de caudas pesadas. Para isso, utilizamos os métodos da aproximação pela distribuição normal, razão de verossimilhanças, {\\it data tilting} e gama generalizada. Obtivemos, através de simulações, que os intervalos calculados a partir do método da gama generalizada apresentam probabilidades de cobertura bem próximas do nível de confiança, com amplitudes médias menores do que os outros três métodos, para dados gerados da distribuição Weibull. Todavia, para dados gerados da distribuição Fréchet, o método da razão de verossimilhanças fornece os melhores intervalos. Aplicamos os métodos utilizados neste trabalho a um conjunto de dados reais, referentes aos pagamentos de indenizações, em reais, de seguros de incêndio, de um determinado grupo de seguradoras no Brasil, no ano de 2003 / In this work, confidence intervals for high quantiles from heavy-tailed distributions were computed. More specifically, four methods, namely, normal approximation method, likelihood ratio method, data tilting method and generalised gamma method are used. A simulation study with data generated from Weibull distribution has shown that the generalised gamma method has better coverage probabilities with the smallest average length intervals. However, from data generated from Fréchet distribution, the likelihood ratio method gives the better intervals. Moreover, the methods used in this work are applied on a real data set from 1758 Brazilian fire claims
|
Page generated in 0.0329 seconds