• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estratégias evolutivas com mutações governadas por distribuições estáveis

Gutierrez, Agostinho Benigno Monteiro 19 September 2007 (has links)
Made available in DSpace on 2016-03-15T19:38:05Z (GMT). No. of bitstreams: 1 Agostinho Benigno Monteiro Gutierrez.pdf: 1771214 bytes, checksum: b247e1232736a440c8348a9a5765749a (MD5) Previous issue date: 2007-09-19 / Fundo Mackenzie de Pesquisa / Evolutionary strategies normally use the Gaussian distributions in order to control the mutations over real values. Since there are other kinds of distributions in nature and in mathematics, such as those of Cauchy, Lévy and S-Lévy, in addition to several stable distributions, it seems a natural step to extend the standard approach, by using an algorithm that would be based upon other existing distributions, or that would even allow the choice of a stable distribution in a self-adaptive way. Such an idea is briefly sketched herein, in the context of populations of individuals that evolve towards the minimum of a test function (namely, the n-dimensional Rastrigin, Rosenberg, Griewangk and Schwefel functions) by means of evolutionary strategies, whose mutations are guided by eight types of specific types of distributions and by a self-adaptive scheme over a subset of the possible stable distributions. During the evolution of the experiment a remarkable influence on the right choice of the distribution family can be noted related to the search for the global minimum of a test function. This is due to the diversity used in the form of distribution: asymmetric and long tale (Lévy) and symmetric with various type of tale on the others. The choice of the type of distribution occurs determining four parameters properly: stability rate, asymmetric, scale and position. The choice of the type of distribution occurs determining if the four parameters above mentiones are part of the chromosome that also contains the possible coordinates of the global minimum that will be mutated according to the chosen distribution. Having applied this different mutation in the evolutionary process will lead to the global minimum of the chosen test function. The results indicate that the combined use of stable distribution controlling the mutations of the coordinates can result in a performance improvement regarding the convergence and consequent determination of the solution, when applied to spatially constrained benchmark functions. / Usualmente, as estratégias evolutivas utilizam as distribuições Gaussianas para governar as mutações sobre valores reais. Já que na natureza e na matemática existem outros tipos de distribuições, tais como de Cauchy, de Lévy e de S-Lévy, além de uma infinidade de distribuições estáveis, é razoável se pensar em expandir a abordagem tradicional, utilizando-se um algoritmo baseado em outras distribuições existentes, ou mesmo que possibilite a escolha de uma distribuição estável, de forma auto-adaptativa. Esta idéia é aqui ilustrada, no contexto de populações de indivíduos que evoluem em busca do mínimo de uma função de teste (no caso, a função de Rastrigin, vale de Rosenberg, Griewangk e Schwefel em n-dimensões) através de estratégias evolutivas cujas mutações são guiadas por oito tipos específicos de distribuições e de um esquema auto-adaptativo em um subconjunto das distribuições estáveis. Durante a evolução dos experimentos observa-se uma forte influência da escolha adequada da família de distribuição na correlação da busca do mínimo global na função de teste. Este fato se deve a diversidade utilizada na forma da distribuição: assimétrica e cauda longa (Lévy) e simétrica com vários tipos de cauda nas demais. A escolha do tipo de distribuição ocorre determinando-se adequadamente quatro parâmetros: Índice de estabilidade (α), assimétrico (β), escala (ϒ) e posição (δ). A escolha do tipo de distribuição ocorre determinando-se os quatro parâmetros acima que fazem parte do cromossomo que também contém as possíveis coordenadas do ponto de mínimo global que seram mutadas com base distribuição escolhida. Com aplicação desta mutação diferenciada no processo evolutivo chegasse ao mínimo global da função de teste escolhida. Os resultados indicaram que a utilização conjunta de distribuições estáveis governando as mutações das coordenadas podem acarretar uma melhora de desempenho com respeito à convergência e conseqüente determinação da solução, quando aplicadas sobre funções de teste delimitadas espacialmente.
2

Programação evolutiva com distribuição estável adaptativa

Carvalho, Leopoldo Bulgarelli de 12 September 2007 (has links)
Made available in DSpace on 2016-03-15T19:38:05Z (GMT). No. of bitstreams: 1 Leopoldo Bulgarelli de Carvalho.pdf: 696477 bytes, checksum: f90764d3c257bf63305bda69583c731e (MD5) Previous issue date: 2007-09-12 / Fundo Mackenzie de Pesquisa / Recent applications in evolutionary programming have suggested the use of different stable probability distributions, such as Cauchy and Lévy, in the random process associated with the mutations, as an alternative to the traditional (and also stable) Normal distribution. The motivation for this is the attempt to improve the results in some classes of optimisation problems, over those obtained with Normal distribution. Based upon an algorithm proposed in the literature, mostly its version in [Lee and Yao, 2004], that use non Normal stable distributions, we study herein the effect of turning it adaptive in respect to the determination of the more adequate stable distribution parameters for each problem. The evaluations relied upon standard benchmarking functions of the literature, and the comparative performance tests were carried out in respect to the baseline defined by a standard algorithm using Normal distribution. The results suggest numerical and statistical superiority of the stable distribution based approach, when compared with the baseline. However, they showed no improvement over the adaptive method of [Lee and Yao, 2004], possibly due to a consequence of implementation decisions that had to be made in the present implementation, that were not made explicit therein. / Aplicações recentes em programação evolutiva tem sugerido a utilização de diferentes distribuições estáveis de probabilidade, tais como de Cauchy e de Lévy, no processo aleatório associado às mutações, como alternativa à tradicional (e também estável) distribuição Normal. A motivação para tanto é melhorar os resultados em algumas classes de problemas de otimização, com relação aos obtidos através da distribuição Normal. Esse trabalho propõe uma nova classe de algoritmos auto-adaptativos com respeito à determinação dos parâmetros da distribuição estável mais adequada para cada problema de otimização. Tais algoritmos foram derivados de um existente na literatura, especialmente sua versão apresentada em [Lee e Yao, 2004]. Em um primeiro momento foram estudadas as principais características das distribuições estáveis que são, nesse trabalho, o foco dos processos aleatórios associados às mutações. Posteriormente, foram apresentadas as diferentes abordagens descritas pela literatura e as sugestões de algoritmos com características auto-adaptativas. As avaliações dos algoritmos propostos utilizaram funções de teste padrão da literatura, e os resultados comparativos de desempenho foram realizados com relação a um algoritmo tradicional baseado na distribuição Normal. Posteriormente, foram aplicados novos comparativos entre as diversas abordagens auto-adaptativas definidas no presente estudo, e feito um comparativo do melhor algoritmo auto-adaptativo aqui proposto com o melhor algoritmo adaptativo obtido de [Lee e Yao, 2004]. Os resultados evidenciaram superioridade numérica e estatística da abordagem baseada em distribuições estáveis, sobre o método tradicional baseado na distribuição Normal. No entanto, o método proposto não se mostrou mais eficaz que o método adaptativo sugerido em [Lee e Yao, 2004], o que pode ter sido decorrente de decisões de implementação não explícitas naquele trabalho, que tiveram de ser tomadas no presente contexto.
3

Modelos GAS com distribuições estáveis para séries temporais financeiras / Stable GAS models for financial time series

Gomes, Daniel Takata 06 December 2017 (has links)
Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste. / GARCH models with normal and t-Student conditional distributions are widely used for volatility modeling in financial data. However, such distributions may not be suitable for some heavy-tailed and leptokurtic series. The stable distributions may be more adequate to fit such characteristics, as already exploited in the literature. On the other hand, the recently developed GAS (Generalized Autoregressive Score) models are dynamic models in which the updating mechanism of the time-varying parameters is based on the score function (first derivative of the log-likelihood function). This provides the natural direction for updating the parameters, based on the complete density. We propose a new GAS model with symmetric stable distribution for volatility modeling. The model can be interpreted as a generalization of the GARCH models, since the classic gaussian GARCH model is derived from it by using particular choices of the stable distribution and the model structure. There are no closed analytical expressions for general stable densities in most cases, hence its numeric computation and derivatives are detailed for the sake of complete development of the estimation process. The stationarity conditions and the dependence structure of the model are analysed. Simulation studies, as well as an application to real data, are presented for comparisons between the usual models and the proposed model, illustrating the effectiveness of the latter.
4

Modelos GAS com distribuições estáveis para séries temporais financeiras / Stable GAS models for financial time series

Daniel Takata Gomes 06 December 2017 (has links)
Modelos GARCH tendo a normal e a t-Student como distribuições condicionais são amplamente utilizados para modelagem da volatilidade de dados financeiros. No entanto, tais distribuições podem não ser apropriadas para algumas séries com caudas pesadas e comportamento leptocúrtico. As chamadas distribuições estáveis podem ser mais adequadas para sua modelagem, como já explorado na literatura. Por outro lado, os modelos GAS (Generalized Autoregressive Score), com desenvolvimento recente, tratam-se de modelos dinâmicos que possuem em sua estrutura a função score (derivada do logaritmo da verossimilhança). Tal abordagem oferece uma direção natural para a evolução dos parâmetros da distribuição dos dados. Neste trabalho, é proposto um novo modelo GAS em conjunção com distribuições estáveis simétricas para a modelagem da volatilidade - de fato, é uma generalização do GARCH, pois, para uma particular escolha de distribuição estável e de estrutura do modelo, tem-se o clássico modelo GARCH gaussiano. Como em geral a função densidade das distribuições estáveis não possui forma analítica fechada, é apresentado seu procedimento de cálculo, bem como de suas derivadas, para o completo desenvolvimento do método de estimação dos parâmetros. Também são analisadas as condições de estacionariedade e a estrutura de dependência do modelo. Estudos de simulação são conduzidos, bem como uma aplicação a dados reais, para comparação entre modelos usuais, que utilizam distribuições normal e t-Student, e o modelo proposto, demonstrando a eficácia deste. / GARCH models with normal and t-Student conditional distributions are widely used for volatility modeling in financial data. However, such distributions may not be suitable for some heavy-tailed and leptokurtic series. The stable distributions may be more adequate to fit such characteristics, as already exploited in the literature. On the other hand, the recently developed GAS (Generalized Autoregressive Score) models are dynamic models in which the updating mechanism of the time-varying parameters is based on the score function (first derivative of the log-likelihood function). This provides the natural direction for updating the parameters, based on the complete density. We propose a new GAS model with symmetric stable distribution for volatility modeling. The model can be interpreted as a generalization of the GARCH models, since the classic gaussian GARCH model is derived from it by using particular choices of the stable distribution and the model structure. There are no closed analytical expressions for general stable densities in most cases, hence its numeric computation and derivatives are detailed for the sake of complete development of the estimation process. The stationarity conditions and the dependence structure of the model are analysed. Simulation studies, as well as an application to real data, are presented for comparisons between the usual models and the proposed model, illustrating the effectiveness of the latter.

Page generated in 0.0574 seconds