21 |
Dérégulations épigénétiques induites par la protéine fusion BRD4-NUT et caractérisation de la proteine NUT au cours de la spermatogenèse et dans les cancersReynoird, Nicolas 02 November 2010 (has links) (PDF)
Il apparait de nos jours évident que les cancers ne peuvent se réduire uniquement à des aberrations génétiques, et qu'un nouveau paramètre est à prendre en considération, l'épigénétique. Au cours de ma thèse je me suis efforcé de caractériser la protéine fusion BRD4-NUT. Cette protéine résulte d'une translocation t(15;19) observée dans les carcinomes de la ligne médiane (NMC), extrêmement agressifs et létaux. La protéine BRD4 possède un double bromodomaine capable de s'associer à la chromatine acétylée, et recrute divers facteurs sur la chromatine. NUT est une protéine de fonction inconnue exprimée exclusivement au cours de la spermatogenèse. J'ai pu démontrer que la protéine fusion BRD4-NUT était suffisante pour induire la tumorigenèse, par un mécanisme de séquestration de la proteine histone acétyltransférase (HAT) CBP/p300. NUT interagit avec CBP/p300 et suractive son activité d'acétylation, créant des foci hyperacétylés de chromatine. BRD4-NUT empêche ainsi CBP/p300 d'aller co-activer la transcription de nombreux gènes, et bloque notamment la réponse apoptotique p53-dépendante. Une inhibition de BRD4-NUT – par siRNA, mutation des bromodomaines ou dérégulation de l'acétylation des foci par des inhibiteurs des histones déacétylases (HDAC) – réenclenche la voie d'apoptose et la mort de ces cellules tumorales. Cette étude est un exemple précis de l'impact qu'une dérégulation épigénétique peut avoir sur l'homéostasie cellulaire et son mécanisme d'induction de la tumorigenèse. Je me suis également interessé à caracteriser la protéine NUT lors de son contexte physiologique, la spermatogenèse, ou lors de son expression illégitime dans des lignées tumorales sans fusion avec BRD4. La protéine NUT est exprimée au niveau des stades de maturation des cellules germinales spermatides, et pourrait participer au remodelage du génome et à l'établissement de l'épigénome final du spermatozoïde. Nut semble également conférer un avantage prolifératif lors de son expression anormale dans au moins trois lignées cellulaires, U2OS, A549 et A7R5. Ainsi, la protéine NUT, seule ou fusionnée avec BRD4, est un facteur Cancer/Testiculaire capable d'influer négativement sur l'homéostasie des cellules somatiques dans lesquelles ses fonctions, normalement restreintes à la spermatogenèse, participent à la tumorigenèse.
|
22 |
Overexpressing Fragments of CREB-Binding Protein (CBP) to Block Transcriptional Dysregulation and Toxicity in Huntington's DiseaseHosier, Gregory 19 July 2012 (has links)
Huntington’s disease (HD) is caused by expression of the huntingtin gene containing an expanded CAG repeat. N-terminal mutant huntingtin protein (N-mHtt) accumulates in the nucleus and impairs transcription of a subset of genes through incorporation into transcriptional complexes or sequestration of proteins away from the promoter. CREB-binding protein (CBP) is a transcriptional co-activator and acetyltransferase (AT) that binds to N-mHtt. We hypothesized that overexpressing CBP fragments that lack a promoter association domain would block N-mHtt-mediated transcriptional dysregulation and toxicity. We found that overexpressing full-length CBP or CBP fragments did not reverse transcriptional dysregulation, but did decrease toxicity in a cell model of HD. Overexpressing fragments of CBP containing the AT domain increased toxicity in wild-type cells, while overexpressing a fragment lacking this domain had no effect. We conclude that excess AT activity was detrimental in wild-type cells, while overexpressing CBP or CBP fragments was protective in HD cells.
|
23 |
Cited2, an autoregulated transcriptional modulator, in TGF-beta signalingChou, Yu-Ting. January 2006 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2006. / [School of Medicine] Department of Pharmacology. Includes bibliographical references. Available online via OhioLINK's ETD Center.
|
24 |
Electrostatic properties at the interface of p53 Transactivation domain bindingCorrigan, Alexsandra Nikol 25 May 2021 (has links)
Intrinsically disordered proteins (IDPs) are an abundant class of proteins and protein regions which rapidly change between multiple structures without an equilibrium position. IDPs exist as a series of conformational ensembles of semi-stable conformations that can be adopted based on a hilly landscape of shallow free energy minima. Disordered sequences share characteristic features differentiating them from globular proteins, including low sequence complexity, low occurrence of hydrophobic residues, high polar and charged residue content, and high flexibility. IDPs are commonly involved in regulation in the cell, and frequently function as, or interact with, hub proteins in protein-protein interaction networks, making them an important class of macromolecules for understanding regulatory and other processes. Given their functional importance, these proteins are widely studied. Many analytical techniques are used, though rapid conformational sampling by IDPs makes it difficult to detect many states with NMR or other techniques. Computational approaches such as molecular dynamics are increasingly used to probe the binding and conformational sampling of these proteins, allowing for observation of factors that cannot be observed with traditional analytical methods such as NMR, such as differing conformational ensembles and the dipoles of individual residues. Here, we studied the role of electrostatic interactions in IDP protein-protein interaction using molecular dynamics simulations performed with the Drude-2019 force field (FF), a polarizable model that allows for more accurate representation of electrostatics, an important factor for highly charged systems like IDPs. For this project, a prototypical protein with disordered regions, p53, was simulated with two protein partners, the nuclear coactivator domain of the CREB binding protein (CBP), and the E3 ubiquitin-protein ligase mouse double minute 2 (MDM2). p53 is widely studied, and the p53 transactivation domain (TAD) is disordered and binds to many structurally diverse partners, making this protein domain a useful model for probing the role of electrostatic interactions formed by IDPs at protein-protein binding interfaces. We found that the Drude-2019 FF allows for simulation of the p53 TAD with Cα chemical shifts comparable to those observed with NMR, supporting that the Drude-2019 FF performs well in simulating IDPs. We observed large relative change in sidechain dipole moments when comparing the p53 TAD alone and when bound to either CBP or MDM2. We observed that aliphatic and aromatic amino acids experienced the largest relative change in sidechain dipole moments, and that there is sensitivity to binding shown in this dipole response. The largest percent changes in sidechain dipole moment were found to localize at and around the binding interface. Understanding the binding interactions of IDPs at a fundamental level, including the role of electrostatic interactions, may help with targeting IDPs or their partners for drug design. / Master of Science in Life Sciences / Many proteins adopt one main structure, and these proteins are called ordered proteins. Intrinsically disordered proteins (IDPs) are an abundant category of proteins which adopt multiple structures, and transition between these different structures is based on factors such as the environment around them, modifications, or interactions with other macromolecules. The flexible structures of IDPs allow them to bind to multiple different partners and to regulate processes in the cell. Since IDPs often regulate processes important to cell function, when these proteins are mutated, misfolded, or otherwise mis-regulated the resulting issues are associated with disease states. IDPs are widely studied with analytical techniques, but because IDPs frequently change shape it can be difficult to observe certain behaviors or certain factors with these techniques. Computational approaches, such as molecular dynamics (MD). MD is the study of molecular motion and interaction, and can allow observation of factors that would be difficult or impossible to observe otherwise, such as the varying structures of IDPs or the dipole moments of specific amino acids within the proteins. For this project we wanted to probe the role of dipole moments, which are charge-based interactions, in the binding of IDPs to protein partners, to better understand how IDPs bind to different partners. We used the p53 protein as an example of IDP binding and simulated it alone and bound to two other proteins, the CREB binding protein (CBP), and the E3 ubiquitin-protein ligase mouse double minute 2 (MDM2). We observed that our simulations were comparable to experiments done with nuclear magnetic resonance spectroscopy, which served to validate that our simulations were realistic. We observed that the dipole moments of the proteins change when simulating the proteins alone and in complex, and that the largest relative changes in dipole are observed for regions of the proteins involved in binding. Probing the role of charge-based interactions in protein-protein binding interactions for IDPs can help us to greater understand these interactions at a more fundamental level and could help with targeting IDPs or their partners for drug design or other problems.
|
25 |
Regulation by Glycogen Synthase Kinase-3 Beta of CBP transcriptional coactivator involved in insulin-dependent glucagon gene transcription / Die Regulation des in die Insulin-abhöngige Glukagongentranskription involvierten transkriptionellen Aktivators CBP durch die Glykogen-Synthase-Kinase-3 BetaMatsiulka, Andrei 16 January 2007 (has links)
No description available.
|
26 |
The role of the p300/CBP complex components in the regulation of apoptosis under hypoxiaXenaki, Georgia January 2008 (has links)
Posttranslational modifications are of great importance in the mediation of transcriptional effects, necessary for signalling in cancer. A characteristic example of such modifications is acetylation of the p53 tumour suppressor, a transcription factor involved in several crucial cellular functions including cell-cycle arrest and apoptosis. p53 is stabilised under hypoxic and DNA damaging-conditions. However, only in the latter scenario is p53 fully capable of inducing the expression of its proapoptotic targets through acetylation. The hypoxia inducible factor 1 (HIF-1) transcription factor is stabilised at low oxygen levels to mediate a cellular adaptive response under these conditions, promoting cell survival. As these two opposing transcription factors share a common transcriptional regulator, p300/CBP, this study focused on deciphering the p300/CBP complex components under differential stress to determine its composition required for cellular responses elicited in response to DNA damage or hypoxia, in an effort to investigate a possible link between differential posttranslational modifications and the resulting cell fate. Hence, the aim of this study was to investigate the roles of p300/CBP components in dictating transcriptional regulation of both HIF-1 and p53 in hypoxic conditions. To carry out this study, the proapoptotic BID gene was the system used, as its promoter contains a p53 response element and a HIF-1 response element (HRE). The p300/CBP associated factors PCAF and Strap were appointed as potent candidates for posttranslational modifications under differential conditions, as they are stress-responsive cofactors. Under DNA damage, PCAF acetylates p53 at K320 and Strap augments p300 binding to p53, both of which amplify the p53 response. Evidence from this study demonstrates that under hypoxia-mimicking conditions PCAF-mediated p53 acetylation at K320 is reduced to a greater extent compared to p300/CBP acetylation at K382. The limited amounts of acetylated p53 at K320 are preferentially recruited to the promoter of the cell cycle arrest p21WAF-1/CIP-1 gene that appears to be unaffected by hypoxia, but fail to be recruited to the BID promoter, rendering p53 incapable of upregulating proapoptotic BID in hypoxic conditions. In addition, under the same conditions, PCAF was found to acetylate, and direct HIF-1 to a particular subset of its targets, leading to alterations in the net physiological effect. Moreover, the intrinsic acetyl transferase activity of PCAF was shown to increase the stability of HIF-1. An additional role was attributed to PCAF in relation to apoptosis, albeit from another angle. BID protein translocation to the cytoplasm in hypoxic conditions was facilitated by ectopically expressed PCAF.Strap was found to be preferentially recruited to the HRE of the BID promoter in hypoxic conditions, and to exert a transrepression effect that appeared to be p53-dependent. Strap also interacted with specific PCAF isoforms depending on the type of cellular stress. Contrary to PCAF, ectopically expressed Strap did not have any effect on BID subcellular distribution. This study has provided additional insight in the mechanisms by which cofactors are involved in cell fate, either by affecting activity and stability of HIF-1 and p53, or having a direct effect on Bcl-2 member subcellular distribution.
|
27 |
Transcriptional and epigenetic control of gene expression in embryo developmentBoija, Ann January 2016 (has links)
During cell specification, temporal and spatially restricted gene expression programs are set up, forming different cell types and ultimately a multicellular organism. In this thesis, we have studied the molecular mechanisms by which sequence specific transcription factors and coactivators regulate RNA polymerase II (Pol II) transcription to establish specific gene expression programs and what epigenetic patterns that follows. We found that the transcription factor Dorsal is responsible for establishing discrete epigenetic patterns in the presumptive mesoderm, neuroectoderm and dorsal ectoderm, during early Drosophila embryo development. In addition, these different chromatin states can be linked to distinct modes of Pol II regulation. Our results provide novel insights into how gene regulatory networks form an epigenetic landscape and how their coordinated actions specify cell identity. CBP/p300 is a widely used co-activator and histone acetyltransferase (HAT) involved in transcriptional activation. We discovered that CBP occupies the genome preferentially together with Dorsal, and has a specific role during development in coordinating the dorsal-ventral axis of the Drosophila embryo. While CBP generally correlates with gene activation we also found CBP in H3K27me3 repressed chromatin. Previous studies have shown that CBP has an important role at transcriptional enhancers. We provide evidence that the regulatory role of CBP does not stop at enhancers, but is extended to many genomic regions. CBP binds to insulators and regulates their activity by acetylating histones to prevent spreading of H3K27me3. We further discovered that CBP has a direct regulatory role at promoters. Using a highly potent CBP inhibitor in combination with ChIP and PRO-seq we found that CBP regulates promoter proximal pausing of Pol II. CBP promotes Pol II recruitment to promoters via a direct interaction with TFIIB, and promotes transcriptional elongation by acetylating the first nucleosome. CBP is regulating Pol II activity of nearly all expressed genes, however, either recruitment or release of Pol II is the rate-limiting step affected by CBP. Taken together, these results reveal mechanistic insights into cell specification and transcriptional control during development. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p><p> </p>
|
28 |
Involvement of the paired-domain transcription factor Pax6 in the regulation of glucagon gene transcription by insulinGrzeskowiak, Rafal 31 October 2000 (has links)
No description available.
|
29 |
Différenciation et plasticité des cellules souches neuralesFlici, Hakima 21 September 2012 (has links) (PDF)
L'étude de la plasticité cellulaire est un puissant outil pour comprendre le choix du destin cellulaire pendant la différenciation et dans les processus cancéreux lors de la transformation d'une cellule normale en une cellule maligne. Chez la drosophile, le facteur de transcription Gcm contrôle la détermination du destin glial. Dans des mutants gcm, les cellules qui se développent normalement en glie entrent dans la voie de différenciation neuronale alors que l'expression ectopique de gcm dans des progéniteurs neuronaux induit de la glie. Ces données font de Gcm un outil important pour comprendre les bases de la plasticité cellulaire. Mon projet de thèse vise à comprendre les mécanismes contrôlant la plasticité des cellules souches neurales. Nous avons ainsi montré que la capacité des CSNs à se convertir en glie après expression forcée de Glide/Gcm décline avec l'âge et que lors de l'entrée en phase quiescente ou apoptotique, ils ne peuvent plus être convertis. Nous avons aussi découvert que le processus de conversion du destin ne se manifeste pas uniquement par l'expression de marqueurs gliaux mais aussi par des changements spécifiques au niveau de la chromatine. D'une manière intéressante, nous avons aussi montré que la stabilité de la protéine Glide/Gcm est contrôlée par deux voies opposées, où Repo et l'histone acetyltransférase CBP jouent un rôle majeur.
|
30 |
Critical and Independent Roles of the P/CAF Acetyltransferase in ARF-p53 Signaling: A DissertationLove, Ian M. 12 May 2011 (has links)
For 30 years, the tumor suppressor p53 has been a subject of intense research in nearly every discipline of scientific inquiry. While numerous surprising roles for p53 in health and disease are uncovered each year, the central role of its activation in preventing neoplastic transformation has been and will remain at the forefront of p53 research as investigators work to address an unexpectedly complex question—precisely how does p53 integrate upstream stress signals to coordinate activation of its target genes in response to stress?
One manner in which to address this question is at the level of transcription initiation—after upstream signals converge on p53 and produce a number of pools of post-transcriptionally modified p53, how exactly are specific target promoters activated in such a sensitive, context-specific manner? The work presented herein aims to address the role of histone acetylation at the p21 promoter—a critical mediator of G1/S arrest—by the P/CAF acetyltransferase in response to a variety of p53-activating stresses. We show that depletion of P/CAF strongly inhibits p21 expression in response to a variety of stresses, despite normal stabilization of p53 and recruitment to target promoters. This defect in p21 expression correlates closely with abrogation of stress-induced cell-cycle arrest. Strikingly, a p53 allele lacking putative P/CAF acetylation sites was still able to direct p21 expression, which was still dependent upon P/CAF. We show further that histone acetylation at H3K14 at the p21 promoter following stress is dependent upon P/CAF. Rescue of p21 expression with wild-type P/CAF or a ∆HAT point mutant indicates that P/CAF requires an intact HAT domain, suggesting that histone acetylation at H3K14 is catalyzed by P/CAF HAT activity, not the molecular bridging of a heterologous HAT by P/CAF. Furthermore, RNA polymerase II (RNAP II) was present at the p21 proximal promoter under all basal and stress conditions, but elongation of RNAP II after stress required the presence of P/CAF. These data indicate that H3K14 acetylation by P/CAF closely correlates with the activation status of the p21 promoter, and may be necessary for activation of a larger subset of p53-responsive promoters.
In addition to its critical role in p21 expression, we noted that p53 stabilization and cell-cycle arrest in response to p14ARF, but not other p53-stabilizing stresses, were also dependent on P/CAF. Cell-cycle arrest induced by p16INK4A was intact after P/CAF ablation, indicating a role for P/CAF in cell-cycle arrest specific to p14ARF-p53 signaling. Basal MDM2 levels were unaffected by P/CAF knockdown, as were p53- MDM2 and ARF-MDM2 complexes. A preliminary analysis of MDM2 localization was inconclusive, due to vastly different quantities of MDM2 in different conditions making analysis of subcellular localization difficult; however, the role of P/CAF in the relocalization of MDM2 to the nucleolus by p14ARF could potentially explain the defect in p53 stabilization, and should be explored further.
These observations, underscored by recent reports that P/CAF undergoes loss of heterozygosity in several tumor types, suggest that P/CAF plays a critical role in p53-mediated cell-cycle arrest through multiple, independent mechanisms. Further study should clarify whether P/CAF is lost in tumors maintaining wild-type p53, and whether its reintroduction into these tumors confers any potential therapeutic benefit.
|
Page generated in 0.0418 seconds