• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of NimA-related Kinase 10 (NEK10): A Role in Checkpoint Control

Moniz, Larissa 31 August 2010 (has links)
Deregulation of the cell cycle is a hallmark of neoplastic transformation and plays a central role in both the initiation and progression of cancer. Members of the NimA-related kinase (NEK) family of protein kinases are emerging as important players in regulation of the eukaryotic cell cycle during normal cell cycle progression and checkpoint activation in response to genotoxic stresses. The focus of this thesis is NEK10, a previously uncharacterized member of the NEK family. While little is known about the biology of NEK10, recent cancer genomics studies have identified NEK10 as a candidate susceptibility gene at chromosome 3p24 in cancer. Work herein describes a role for NEK10 in the cellular response to ultraviolet (UV) irradiation. NEK10 was required for the activation of ERK1/2 signaling upon UV irradiation, but not in response to mitogens, such as the epidermal growth factor. NEK10 interacted with Raf and MEK and enhanced MEK activity through a novel mechanism involving MEK autoactivation. Significantly, appropriate maintenance of the G2/M checkpoint following UV irradiation required NEK10 expression and ERK1/2 activation. In support of a conserved role for NEK10 in the cellular response to UV irradiation, nekl-4, the NEK10 C.elegans homologue, affected embryonic sensitivity to UV-irradiation. In search of regulatory inputs into NEK10, using mass spectrometry, our laboratory identified 19 distinct sites of NEK10 phosphorylation. Characterization of a number of these sites revealed a role for intermolecular autophosphorylation in achieving full NEK10 catalytic activity through activation loop phosphorylation on S684 and S688. Further, a C-terminal phosphorylation site on NEK10, S933, was found to be a 14-3-3 binding site, and was essential for NEK10 cytoplasmic to nuclear translocation following UV irradiation. Taken together, my studies have discovered a role for NEK10 in the engagement of the G2/M cell cycle checkpoint and provided a mechanistic insight into the relationship between NEK10 and the Raf/MEK/ERK cascade, and the control of NEK10 subcellular localization. This work will serve as a foundation for future studies aimed at understanding the molecular mechanism of NEK10 action and its function in development and tumourigenesis.
2

Characterization of NimA-related Kinase 10 (NEK10): A Role in Checkpoint Control

Moniz, Larissa 31 August 2010 (has links)
Deregulation of the cell cycle is a hallmark of neoplastic transformation and plays a central role in both the initiation and progression of cancer. Members of the NimA-related kinase (NEK) family of protein kinases are emerging as important players in regulation of the eukaryotic cell cycle during normal cell cycle progression and checkpoint activation in response to genotoxic stresses. The focus of this thesis is NEK10, a previously uncharacterized member of the NEK family. While little is known about the biology of NEK10, recent cancer genomics studies have identified NEK10 as a candidate susceptibility gene at chromosome 3p24 in cancer. Work herein describes a role for NEK10 in the cellular response to ultraviolet (UV) irradiation. NEK10 was required for the activation of ERK1/2 signaling upon UV irradiation, but not in response to mitogens, such as the epidermal growth factor. NEK10 interacted with Raf and MEK and enhanced MEK activity through a novel mechanism involving MEK autoactivation. Significantly, appropriate maintenance of the G2/M checkpoint following UV irradiation required NEK10 expression and ERK1/2 activation. In support of a conserved role for NEK10 in the cellular response to UV irradiation, nekl-4, the NEK10 C.elegans homologue, affected embryonic sensitivity to UV-irradiation. In search of regulatory inputs into NEK10, using mass spectrometry, our laboratory identified 19 distinct sites of NEK10 phosphorylation. Characterization of a number of these sites revealed a role for intermolecular autophosphorylation in achieving full NEK10 catalytic activity through activation loop phosphorylation on S684 and S688. Further, a C-terminal phosphorylation site on NEK10, S933, was found to be a 14-3-3 binding site, and was essential for NEK10 cytoplasmic to nuclear translocation following UV irradiation. Taken together, my studies have discovered a role for NEK10 in the engagement of the G2/M cell cycle checkpoint and provided a mechanistic insight into the relationship between NEK10 and the Raf/MEK/ERK cascade, and the control of NEK10 subcellular localization. This work will serve as a foundation for future studies aimed at understanding the molecular mechanism of NEK10 action and its function in development and tumourigenesis.
3

Optimizing experimental radioimmunotherapy : investigating the different mechanisms behind radiation induced cell deaths / Optimering av experimentell radioimunoterapi : utredning av de olika mekanismerna bakom strålningsinducerade celldöder

Lindgren, Theres January 2013 (has links)
Background. Radiation therapy is an important treatment regimen for malignant disease. Radiation therapy uses ionizing radiation to induce DNA damage in tumor cells in order to kill them. Tumor cells are more sensitive than normal cells, since they have an increased proliferation rate and often lack the ability to properly repair the induced damage. Radiation can be delivered by an external source outside the body, by brachytherapy delivered inside the patient near the tumor, or systemically by injection into the blood stream. When delivered systemically, the radiation is administered as radioisotope alone or conjugated to antibodies targeting tumor antigens (radioimmunotherapy). Radiotherapy (RT) usually is administered using high doses, causing necrotic cell death. Low doses of radiation (by RT or RIT) have been observed to induce different types of cell deaths, like apoptosis, mitotic catastrophe or senescence.Aims. We wanted to elucidate the molecular and cellular events responsible for the induction of cell death in cells of different origin and p53 status. We also wanted to identify the kinetics behind gene expression alterations induced in response to irradiation and correlate these to cell death specific molecular and cellular events. In the end this research aims to identify key regulators of the main radiation induced cell death modalities in order to improve our understanding and potentially use this knowledge to increase treatment efficacy of radiation therapy. Methods. Four different cell lines were used in these studies to elucidate the role of p53 status cell origin in radiation induced cell death. HeLa Hep2 tumor cells have been used previously in our group in several RIT and RT studies. During these studies we observed morphological alterations in shrinking tumors that were typical for mitotic catastrophe. This led to studies on the underlying mechanisms causing these aberrations. Isogenic solid tumor cell lines HCT116 p53 +/+ and HCT116 p53 -/- were included to further elucidate the role of p53, and also to study senescence, one of the main outcomes in irradiated tumor cells. MOLT-4 was finally included to compare these finding to classical apoptosis. Gene expression analysis was done using Illumina bead chip arrays, and pathway analysis was performed using MetaCore (Thomson Reuters). Results. In paper I, II, and III, transient G2/M arrests were observed in HeLa Hep2 and HCT116 p53 -/- cells following irradiation. The lack of p53 in these cells caused checkpoint adaptation due to an unscheduled accumulation of genes promoting mitosis. Anaphase bridges were observedivin HeLa Hep2 cells, as a consequence of premature mitotic entry with unrepaired DNA damage. Centrosome amplification, as well as deregulation of genes involved in centrosome amplification and clustering was observed in both cell lines. We observed changes in expression of several genes responsible for maintaining the spindle assembly checkpoint (SAC) arrest. A prolonged SAC arrest has been shown to be important for execution of mitotic catastrophe. SAC activation was followed by mitotic slippage and a subsequent failure of cytokinesis. We observed multipolar mitoses (both cell lines), multiple- and micronuclei (HeLa Hep2, paper I), and an increased frequency of tetraploid cells (HeLa Hep2 and HCT116 p53 -/- cells). A fraction of HeLa Hep2 cells also displayed apoptotic features, including caspase activation and DNA fragmentation (paper I). These findings indicate that mitotic catastrophe and the activation of a delayed type of apoptosis are involved in cell death following RIT.HCT116 p53 +/+ cells induced both G1 and G2 arrest following irradiation (paper III). Gene expression analysis revealed significantly decreased expression of genes responsible for cell cycle progression (pronounced decrease compared to HeLa Hep2 and HCT116 p53 -/-), especially mitotic genes. The prolonged arrest transitioned into senescence starting 3 days following irradiation and peaked after 7 days. Several genes associated with SASP were upregulated in the same time frame as senescence was induced, further supporting the fact that senescence is the main radiation induced response in HCT116 p53 +/+ cells.MOLT-4 cells, similar to HCT116 p53 +/+ cells, induced both G1 and G2 arrests in response to irradiation (paper IV). Morphological studies revealed apoptotic features like shrunken cells with condensed DNA. Caspase assays showed increased activity of caspases -3, -8, and -9. Gene expression analysis confirmed an increased expression of genes important for both extrinsic (FAS and TRAIL) and intrinsic (BAX) apoptosis. Furthermore, changed expression also included genes involved in cell cycle checkpoints and their regulation and genes important for T-cell activation/proliferation. Conclusions. RIT is successfully used to treat lymphoma, but treatment of solid tumors with RIT is still difficult. This thesis elucidates cellular alterations characteristic for the 3 main radiation death modalities, i.e. mitotic catastrophe, senescence and apoptosis. Furthermore, cell death specific traits are correlated to alterations in gene expression. Treatment efficacy can potentially be improved by finding key cell death mediators to inhibit in combination with radiation. / Bakgrund. Strålbehandling används för att bota eller lindra symptomen av cancer och består av joniserande strålning vars syfte är att skada DNAt i cellerna vilket leder till att de dör. Tumörceller är känsligare för strålning än normala celler eftersom de delar sig i snabbare takt och ofta saknar förmågan att reparera skadorna som uppstår. Det finns flera typer av strålbehandling: extern strålbehandling, d.v.s. när strålkällan är placerad utanför kroppen, brachyterapi, när strålkällan placeras i en kapsel inuti kroppen, eller systemisk strålning, där en radioisotop injiceras, antingen själv eller kopplad till en antikropp, då kallad radioimmunoterapi (RIT). Vid extern strålbehandling använder man sig ofta av relativt höga doser av strålning under ett kortare tidsintervall. Dessa celler dör ofta en nekrosliknande död. Med RIT kan man behandla patienterna med lägre doser under en längre tid och strålningen kan riktas specifikt till tumören, vilket minskar risken för bieffekter. Dessa celler dör av andra former av celldöd, apoptos, senescence eller mitotisk katastrof. Apoptos är för många synonymt med programmerad celldöd, och sker till exempel i respons till DNA skada. En apoptotisk cell känns igen på sitt utseende med fragmenterat DNA, nedbrutet cytoskelett och apoptotiska kroppar. Senescence är associerat med cellens åldrande men kan även orsakas av DNA-skador, och är en vanlig form av celldöd hos solida tumörceller med funktionell p53-signalering. Bestrålade solida tumörceller som saknar p53-signalering, antingen på grund av mutationer eller på grund av virusinducerad inaktivering, dör oftast i en helt annan celldöd, kallad mitotisk katastrof. Avsaknad av p53 leder till att en cell som erhållit skador på DNAt inte klarar av att uppehålla cellcykeln länge nog för att reparera skadorna. Inte heller apoptos induceras, eftersom p53 saknas. Detta leder till att cellen kommer att gå in i mitos med skador i sitt DNA som ej hunnit repareras. Celler i mitotisk katastrof har ett väldigt typiskt utseende med multipla kärnor, mikrokärnor (kromosomrester), multipla centrosomer och multipolära mitotiska spindlar. En del celler dör i mitosen medan andra försöker dela sig och kan överleva i flera generationer till, dock med skador på DNA. Målet med denna avhandling var att utreda de molekylära och transkriptionella mekanismerna bakom strålningsinducerad celldöd, och p53s roll i detta. Dessa studier kan så småningom leda till att viktiga regulatoriska proteiner av de strålnigsinducerade celldödsmekanismerna kan identifieras. Specifika inhibitorer riktade mot dessa proteiner kan med ökad kunskap strategiskt användas i kombination med strålning och potentiellt leda till förbättrade behandlingseffekter. Metoder. Vi använde fyra cellinjer med olika bakgrund och p53 status. Vi har tidigare studerat HeLa Hep2 (en solid tumörcellslinje infekterad medviHPV som slår ut funktionen av p53) och sett vid både RT och RIT studier, att cellernas morfologi avviker från klassiks apoptos (stora celler med stora mängder DNA, istället för små celler med lite DNA). Detta ledde till studier av mekanismerna bakom denna avvikande cellmorfologin, som är typisk för mitotisk katastrof. Vi utökade studien med HCT116 p53 +/+ och HCT116 p53 -/- som är identiska så när som på p53, där ena cellinjen saknar denna gen. Detta skulle ge ökad förståelse för p53s roll vid mitotisk katastrof och även visa mekanismerna bakom senescence, en annan vanlig celldödsmekanism i strålade solida tumörceller. Även MOLT-4 inkluderades i studien för att kunna jämföra våra resultat med en cellinje som genomgår klassisk apoptos och är mer känslig för strålning. Resultat. I celler där mitotisk katastrof inducerades efter strålning (HeLa Hep2, HCT116 p53-/-) såg vi ett övergående G2 arrest. Eftersom cellerna inte klarade av att underhålla detta arrest, då de saknar p53, fortsatte de in i nästa fas av cellcykeln, mitos. Detta ledde till att DNA skador kvarstod och en ökad frekvens av anafasbryggor. Dessutom skedde en centrosomamplifiering i dessa celler vilket gav upphov till multipolära mitotiska spindlar och en efterföljande icke fungerande cytokines. Detta gav i sin tur celler med multipla kärnor eller mikrokärnor. En ökad frekvens av tetraploida och polyploidaEn förändrad expression av gener som kunde kopplas till flera av dessa för mitotisk katastrof specifika karaktäristika observerades också. Flera gener associerade med reglering av centrosomen och dess amplifiering, med kontrollen av cellens progression från G2 till M-fasen av cellcykeln, samt involverade i kontrollen av en rätt utförd mitos (SAC) hade en ändrad genexpression som korrelerade väl i tid med de ovan nämda fenotyperna. Caspaser som är viktiga för apoptos visade sig vara aktiva i HeLa Hep2, vilket indikerar att mitotisk katastrof kan leda till fördröjd apoptos. Men en del celler lyckas smita undan från apoptosinduktionen och fortsätter i en ny runda i cellcykeln, och detta kunde ses som en växande population viabla celler med ökad mängd DNA (tetraploida celler).HCT116 p53 +/+ celler som har funktionellt p53 kunde inducera både G1 and G2 arrest och genexpressionen visade att många gener som styr övergången till mitos var nedreglerade och förhindrade detta (till skillnad från HeLa Hep2 och HCT116 p53 -/-, där dessa nivåer var högre). Dessa arrester övergick till senescence 3 dagar efter strålning och många gener kopplade till senescence visade ett ökat uttryck. Vi såg ingen markant ökning av centrosomer eller polyploida celler vilket skiljde sig från HeLa Hep2 och HCT116 p53 -/-. Detta tyder på att senescence skiljer sig markant åt från mitotisk katastrof och att p53 är viktig för induktionen av denna form av celldöd.viiVi såg att MOLT-4, precis som HCT116 p53 +/+, inducerar både G1 and G2 arrest. Denna arrest resulterade dock i ökad expression av gener viktiga för cellcykelarrest och apoptosinduktion, och vi såg även en ökad aktivitet av caspaser. Morfologiska studier visade att strålade MOLT-4 celler ofta var små och hade kondenserat DNA, vilket är typiska kännetecken för apoptos. Strålning av MOLT-4 celler ledde till aktivering av klassisk apoptos, och tidsförloppet var mycket snabbare jämfört med de övriga cellinjerna. Slutsats. RIT är en framgångsrik metod för att behandla hematologiska maligniteter, men solida tumörer svarar fortfarande dåligt på denna form av behandling. Denna avhandling visar på komplexiteten bakom strålningsinducerad celldöd och att det är viktigt att identifiera de reglerande mekanismerna för att kunna förbättra RIT av solida tumörer. Vi visar även på vikten av p53 vad gäller tumörens respons av strålbehandling. Genom att identifiera viktiga proteiner för mitotisk katastrof, senescence, och apoptos, kan man utveckla inhibitorer mot dessa och använda de i kobination med RT och RIT för att förbättra behandlingseffekten.
4

Post-translational Regulation of RPA32, ATM and Rad17 Controls the DNA Damage Response

Feng, Junjie January 2009 (has links)
<p>The eukaryotic genome integrity is safeguarded by the DNA damage response, which is composed of a network of signal transduction pathways that upon genotoxic stresses, arrest cell cycle progression, motivate repair processes, or induce apoptosis or senescence when cells incur irreparable DNA damage. During this process, DNA damage-induced post-translational modifications, most notably protein phosphorylation, of a variety of DNA damage-responsive proteins has been shown to mediate the initiation, transduction and reception of the DNA damage signals, resulting in alterations of their stability, activities or subcellular localizations, ultimately leading to activation of various downstream effector pathways. </p><p>While a lot has been elucidated on the downstream events of the DNA damage response, little is known about how DNA damage is detected. Two still ongoing studies of this dissertation attempt to address this question. Our preliminary work on ATM indicates that serine 2546 is critical for its kinase activity. Substitution of this residue with phosphomimetic aspartate, but not nonphosphorylable alanine, abrogates the kinase activity of ATM and fails to rescue the checkpoint-deficient phenotype exhibited by the ATM-deficient cells, suggesting that removal of an inhibitory phospho group at S2546 might be required for the activation of ATM. In another study, we identified a novel DNA-damage responsive threonine residue (T622) in Rad17, which undergoes ATM/ATR-dependent phosphorylation in vitro and in vivo. Ectopic expression of a phosphodeficient mutant (T622A) of Rad17, but not its wild-type control, shows a pronounced defect in sustaining Chk1 phosphorylation and the corresponding G2/M checkpoint upon DNA damage, suggesting that phosphorylation at T622 might complement that on the two previously reported phosphorylation sites, S635 and S645, to mediate G2/M checkpoint activation while the latter is primarily responsible for intra-S phase checkpoint. </p><p>Although a large amount of knowledge has been accumulated about the initiation and activation process of the DNA damage response, how cells recover, the equally important flip side of the response, has remained poorly understood. We have found that in cells recovering from replication stress, RPA32 phosphorylation at ATM/ATR-responsive sites T21 and S33, which reportedly suppresses DNA replication and recruiting other checkpoint and repair proteins to the DNA lesions, is reversed by the serine/threonine protein phosphatase 2A (PP2A). Cells with a RPA32 persistent-phosphorylation mimic (T21D/S33D) exhibit normal checkpoint activation and re-enter the cell cycle normally after recovery, but display a pronounced defect in the repair of DNA breaks. These data indicate that PP2A-mediated RPA32 dephosphorylation may be a required event during the repair process in the DNA damage response. </p><p>In summary, these studies in this dissertation highlight the importance of reversible phosphorylation and dephosphorylation in the modulation of the DNA damage response. What's more, they also extend our knowledge and deepen our understanding of this process by revealing that dephosphorylation may positively regulate the activation of cell cycle checkpoints, which is seemingly dominated by protein phosphorylation upon DNA damage, that phosphorylation of certain checkpoint proteins at different sites may result in distinct consequences, and that dephosphorylation of some activated checkpoint/repair proteins may function as an important mechanism for cells to recover from the DNA damage response.</p> / Dissertation
5

The Retinoblastoma Tumor Suppressor Modifies the Therapeutic Response of Breast Cancer

Bosco, Emily E. 16 May 2006 (has links)
No description available.
6

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

Matchett, K.B., McFarlane, S., Hamilton, S.E., Eltuhamy, Y.S.A., Davidson, M.A., Murray, J.T., Faheem, A.M., El-Tanani, Mohamed 2014 January 1924 (has links)
No / Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
7

Funkční in vitro analýza alternativních sestřihových variant genu BRCA1 / The functional in vitro analysis of the BRCA1alternative splicing variants

Ševčík, Jan January 2012 (has links)
BACKGROUND: The inactivation of the tumor suppressor gene BRCA1 is a predisposing factor for a breast/ovarian cancer development. Formation of cancer-specific alternative splicing variants with aberrant biological properties can represent additional mechanism decreasing the overall BRCA1 activity in DNA double strand break (DDSB) repair. In this study, we analyzed BRCA1 alternative splicing variants BRCA114-15 and 17-19 ascertained previously during the screening of high-risk breast cancer individuals. METHODS: We established a stable MCF-7 cell line-based model system for an in vitro analysis of BRCA1 variants. Using this system, we analyzed the impact of BRCA114-15 and 17-19 variants on DNA repair kinetics using comet assay and confocal immunomicroscopy. The capacity of DNA repair was assessed directly by an in vitro NHEJ assay and indirectly by a mitomycin C sensitivity test. The proliferation activities were determined by a clonogenic assay and growth curves. RESULTS: Overexpression of BRCA114-15 and 17-19 increases the endogenous level of DNA damage, slows down the DDSB repair, and decelerates the initial phase of radiation-induced foci formation and prolongs their persistence. Moreover, BRCA114-15 and 17-19 differentially influence the activity of HR and NHEJ and sensitivity of MCF-7 cells to ionizing...
8

Funkční in vitro analýza alternativních sestřihových variant genu BRCA1 / The functional in vitro analysis of the BRCA1alternative splicing variants

Ševčík, Jan January 2012 (has links)
BACKGROUND: The inactivation of the tumor suppressor gene BRCA1 is a predisposing factor for a breast/ovarian cancer development. Formation of cancer-specific alternative splicing variants with aberrant biological properties can represent additional mechanism decreasing the overall BRCA1 activity in DNA double strand break (DDSB) repair. In this study, we analyzed BRCA1 alternative splicing variants BRCA114-15 and 17-19 ascertained previously during the screening of high-risk breast cancer individuals. METHODS: We established a stable MCF-7 cell line-based model system for an in vitro analysis of BRCA1 variants. Using this system, we analyzed the impact of BRCA114-15 and 17-19 variants on DNA repair kinetics using comet assay and confocal immunomicroscopy. The capacity of DNA repair was assessed directly by an in vitro NHEJ assay and indirectly by a mitomycin C sensitivity test. The proliferation activities were determined by a clonogenic assay and growth curves. RESULTS: Overexpression of BRCA114-15 and 17-19 increases the endogenous level of DNA damage, slows down the DDSB repair, and decelerates the initial phase of radiation-induced foci formation and prolongs their persistence. Moreover, BRCA114-15 and 17-19 differentially influence the activity of HR and NHEJ and sensitivity of MCF-7 cells to ionizing...
9

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl 20 December 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.
10

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl 20 December 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.

Page generated in 0.0533 seconds