191 |
The role of chronically stimulated and senscent T cells in autoimmunityRatts, Robert Bruce January 2006 (has links)
Dissertation (Ph.D.) -- The University of Texas Southwestern Medical Center at Dallas, 2006. / Embargoed. Vita. Bibliography
|
192 |
Role of Notch1 in Cardiac Cell Differentiation and Migration: A DissertationChau, Dinh Le Mary 06 August 2007 (has links)
The cardiac conduction system is responsible for maintaining and orchestrating the rhythmic contractions of the heart. Results from lineage tracing studies indicate that precursor cells in the ventricles give rise to both cardiac muscle and conduction cells. Using chick embryonic hearts, we have found that Notch signaling plays an important role in the differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 expression coincides with a conduction marker at early stages of conduction system development. Mis-expression of constitutively active Notch1 (NIC) in early heart tubes exhibited multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in the expression of cardiac muscle markers, but an increase in the expression of conduction cell markers. Loss-of-function studies further support that Notch1 signaling is important for the differentiation of these cardiac cell types. Functional electrophysiology studies show that the expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway patterns.
During cardiogenesis, groups of myocardial cells become separated from each other, and migrate to form the trabeculae. These finger-like projections found within the ventricular chamber coalesce to generate the muscular portions of the interventricular septum, the thickened myocardium, and future sites of the conduction system. We have found that Notch signaling regulates the migration of cardiac cells during cardiogenesis. Over-expression of constitutively active Notch causes cells to localize more centrally within the heart, while loss-of-Notch function results in cells distributed within the periphery of the heart. Staining of heart sections shows that Notch signaling regulates the expression of N-cadherin, the predominant adhesion molecule in cardiomyocytes. We find that the effects of Notch on cell migration are two-fold: delamination and cell motility. Time-lapse studies demonstrate that Notch signaling increases cell motility, but does not affect speed or directionality of migration. Furthermore, we find that the effects of Notch on cell migration is independent of its effects on differentiation.
|
193 |
Combinação de moduladores epigenéticos com ativação de receptor retinoide em neuroblastoma : efeitos sobre proliferação e diferenciação celularAlmeida, Viviane Rösner January 2016 (has links)
Neuroblastoma (NB) é a forma mais indiferenciada de tumores neuroblásticos e a principal causa de morte por câncer pediátrico. Alterações epigenéticas interagem em todas as etapas do desenvolvimento do câncer, promovendo a progressão tumoral. A remodelação da cromatina é influenciada pela acetilação de histonas e a metilação de DNA. Acetiltransferases de histona (HATs), desacetilases de histonas (HDAC) e metiltransferase de DNA (DNMTs) são alvos de estratégias terapêuticas em tumores. Os retinoides agem nas vias de diferenciação celular, anti-proliferação e pró-apoptose. Nesse trabalho, é proposto que a combinação desses moduladores epigenéticos e de diferenciação em linhagens de células de NB humano é mais efetiva que os agentes isolados. Os tratamentos induziram mudanças na expressão de marcadores de diferenciação e indiferenciação, como c-Myc, β-3tubulina, NeuN e Bmi1, e alterações morfológicas nas duas linhagens celulares utilizadas, SK-N-BE(2) e SH-SY5Y. Os dados encontrados podem contribuir para uma melhor compreensão dos mecanismos moleculares dos moduladores retinoides e epigenéticos em NB capazes de acrescentar melhorias nas atuais estratégias terapêuticas. / Neuroblastoma (NB) is the most undifferentiated form of neuroblastic tumors and the leading cause of death from pediatric cancer. Epigenetic changes interact at all stages of cancer development, promoting tumor progression. Chromatin remodeling is influenced by histone acetylation and DNA methylation. Histone acetyltransferases (HATs), histone deacetylases (HDAC), and DNA methyltransferase (DNMTs) are targets for therapeutic strategies in cancer. Retinoids act on cell differentiation pathways and display anti-proliferation and pro-apoptotic actions. In the present research we examined the effects of combining epigenetic modulators and a retinoid receptor agonist in human NB cells. The retinoid all trans-retinoic acid (ATRA) combined with inhibitors of either histone deacetylases (HDACs) or DNA methyltransferase was more effective than any drug given alone in impairing the proliferation of SH-SY5Y and SK-N-BE(2) NB cells. In addition, the treatments induced differential changes in the expression of differentiation markers including c-Myc, β-3tubulin, NeuN and Bmi1, and morphological changes in SK-N-BE(2) e SH-SY5Y cell lines. The data contribute to a better understanding of the molecular mechanisms of retinoid modulators and epigenetic in NB able to add improvements in current therapeutic strategies.
|
194 |
Combinação de moduladores epigenéticos com ativação de receptor retinoide em neuroblastoma : efeitos sobre proliferação e diferenciação celularAlmeida, Viviane Rösner January 2016 (has links)
Neuroblastoma (NB) é a forma mais indiferenciada de tumores neuroblásticos e a principal causa de morte por câncer pediátrico. Alterações epigenéticas interagem em todas as etapas do desenvolvimento do câncer, promovendo a progressão tumoral. A remodelação da cromatina é influenciada pela acetilação de histonas e a metilação de DNA. Acetiltransferases de histona (HATs), desacetilases de histonas (HDAC) e metiltransferase de DNA (DNMTs) são alvos de estratégias terapêuticas em tumores. Os retinoides agem nas vias de diferenciação celular, anti-proliferação e pró-apoptose. Nesse trabalho, é proposto que a combinação desses moduladores epigenéticos e de diferenciação em linhagens de células de NB humano é mais efetiva que os agentes isolados. Os tratamentos induziram mudanças na expressão de marcadores de diferenciação e indiferenciação, como c-Myc, β-3tubulina, NeuN e Bmi1, e alterações morfológicas nas duas linhagens celulares utilizadas, SK-N-BE(2) e SH-SY5Y. Os dados encontrados podem contribuir para uma melhor compreensão dos mecanismos moleculares dos moduladores retinoides e epigenéticos em NB capazes de acrescentar melhorias nas atuais estratégias terapêuticas. / Neuroblastoma (NB) is the most undifferentiated form of neuroblastic tumors and the leading cause of death from pediatric cancer. Epigenetic changes interact at all stages of cancer development, promoting tumor progression. Chromatin remodeling is influenced by histone acetylation and DNA methylation. Histone acetyltransferases (HATs), histone deacetylases (HDAC), and DNA methyltransferase (DNMTs) are targets for therapeutic strategies in cancer. Retinoids act on cell differentiation pathways and display anti-proliferation and pro-apoptotic actions. In the present research we examined the effects of combining epigenetic modulators and a retinoid receptor agonist in human NB cells. The retinoid all trans-retinoic acid (ATRA) combined with inhibitors of either histone deacetylases (HDACs) or DNA methyltransferase was more effective than any drug given alone in impairing the proliferation of SH-SY5Y and SK-N-BE(2) NB cells. In addition, the treatments induced differential changes in the expression of differentiation markers including c-Myc, β-3tubulin, NeuN and Bmi1, and morphological changes in SK-N-BE(2) e SH-SY5Y cell lines. The data contribute to a better understanding of the molecular mechanisms of retinoid modulators and epigenetic in NB able to add improvements in current therapeutic strategies.
|
195 |
Sinalização redox na diferenciação osteogênica / Redox signaling in osteogenic differentiationVanessa Simões 09 May 2016 (has links)
Mecanismos redox estão envolvidos em diversos processos, como sobrevivência, proliferação e diferenciação celular, pela modulação da atividade de quinases, fosfatases e fatores de transcrição, entre outros, através da modificação oxidativa e reversível de resíduos de cisteína. Neste trabalho, nós estudamos processos redox subjacentes a diferenciação osteogênica induzida por BMP2, utilizando linhagens de células MC3T3-E1. Nosso objetivo foi investigar modificações redox como possíveis moduladores do processo de diferenciação osteogênica. Para isso, nós primeiramente caracterizamos a diferenciação osteogênica nas células MC3T3-E1 após o tratamento com BMP2, através da expressão do marcador osteogênico Osteocalcina, da fosforilação do complexo Smad 1/5/8 e da deposição de matriz extracelular calcificada. Análises de expressão gênica por qPCR mostraram que o tratamento com BMP2 resultou no aumento de expressão de NOX4, o que provavelmente leva ao aumento na produção de peróxido de hidrogênio intracelular. Nós investigamos também a modulação de peroxiredoxinas nesse processo e análises de expressão gênica mostraram que não há alterações nos níveis de expressão de Prx1 e 2 durante a diferenciação, mas os ensaios de western blot redox indicam que a Prx1 pode ser oxidada após o tratamento com BMP2, de maneira dose dependente. Outras análises in vitro mostram que células expostas a N-acetilcisteína (NAC) e PEG-catalase apresentam diferenciação osteogênica prejudicada, detectada por baixos níveis de deposição de matriz extracelular calcificada, comparado com células não-tratadas. Além disso, a fosforilação de Smad 1/5/8 são reduzidas nessas condições. Nossos dados sugerem que processos redox podem modular a sinalização celular durante o processo de diferenciação osteogência / Redox mechanisms are involved in several processes, such as cell survival, proliferation and differentiation, among other ways by modulating kinases, phosphatases and transcription factors activity that can occur through reversible and oxidative modification of cysteine residues. We were interested in studying redox processes underlying osteogenic differentiation induced by BMP-2, using MC3T3-E1 cell lineage. Our objective was to investigate redox modifications as possible modulators of the osteogenic differentiation process. We first characterized osteogenic differentiation in MC3T3-E1 cells upon BMP2 treatment, through gene expression of the osteogenic marker Osteocalcin, Smad 1/5/8 (belonging to the BMP-2 pathway) protein phosphorylation and extracellular matrix calcification. Gene expression analysis by qPCR showed that BMP2 treatment resulted in NOX4 upregulation, which probably also leads to hydrogen peroxide production. We have investigated peroxiredoxin modulation in this process, and gene expression analysis shows no significant change in peroxiredoxin 1 and 2 expression levels, but redox western blotting assays indicate that Prx1 can be oxidized after BMP2 treatment, in a dose dependent manner. In vitro analysis shows that cells exposed to N-acetyl-L-cysteine (NAC) and PEG-catalase display impaired osteogenic differentiation, detected by lower levels of calcified extracellular matrix deposition compared with non-treated cells. Moreover, phosphorylation of Smad 1/5/8 complex is reduced under these redox treatments. Our data suggest that redox pathways can modulate cell signaling during the osteogenic differentiation process
|
196 |
Differentiation potential of adipose derived stem cells (ADSCs) when co-cultured with smooth muscle cells (SMCs) and the role of low intensity laser irradiation (LILI)Mvula, Bernard Dandenault 14 July 2015 (has links)
D.Tech. (Biomedical Technology) / Stem cells are defined as undifferentiated cells that can proliferate and have the capacity of both self-renewal and differentiation to one or more types of specialised cells (Bishop et al., 2002). The two types of stem cells are embryonic and adult stem cells. Adult stem cells have been isolated from adipose tissue in abundance and with ease (Mvula et al., 2010) and these cells have been differentiated into smooth muscle cells (SMCs) with the enhancement of low intensity laser irradiation and the growth factors (de Villiers et al., 2011). Smooth muscles play an important role in diseases like cancer, hypertension, asthma and others (Rodriguez et al., 2006). Studies have shown that low intensity laser irradiation (LILI) can increase proliferation of cells, cellular attachment, differentiation and production of transforming growth factor-beta 1 (TGF-β1) in cells indicating that in vitro LILI can modulate the activity of cells and tissues (Khadra et al., 2005). Further studies have also discovered that LILI enhances wound healing (Fiszerman and Markmann, 2000). LILI has been successfully used for pain attenuation and to induce wound healing in non-healing defects (Hawkins and Abrahamse, 2005). LILI has been shown to increase viability and proliferation of adipose derived stem cells (ADSCs) (Mvula et al., 2008 and Mvula et al., 2010). Growth factors such as retinoic acids (RA) have been shown to have major influences on cells. They are involved specifically in apoptosis, cell proliferation, differentiation and maturation (Duong and Rochette, 2011; Gudas and Wagner, 2011). Co-culturing is used to achieve several cellular processes including proliferation, differentiation and migration (Kim et al., 2012). When two types of cells are cultured together, they are exposed to a number of complex environmental factors such as cytokines, extracellular matrix components, cell interactions, mechanical stimuli, signalling transcriptional pathways and transcriptional factors such as growth factors. v These factors are able to affect migration, proliferation and differentiation of one cell type into another (Zhang et al., 2012). The aim of this study was to investigate the differentiation potential of ADSCs when co-cultured with (SMCs) and to determine the role of LILI on the co-cultured cells. Short and long term biological effects were monitored on these cells following exposure to LILI and addition of growth factors. The study used commercial and isolated human ADSCs and SMCs (SKUT-1) cells. After growing cells to semiconfluency for ADSCs and confluency for SMCs, they were co-cultured in a ratio of 1:1 using the established methods supplemented with and without growth factors (TGF-β1and RA) and then exposed to LILI. The cellular morphology, viability and proliferation activities of the irradiated cells were then assessed using direct inverted and differential interference contrast microscopy (DIC), trypan blue test, adenosine triphosphate luminescence, optical density analysis, and carboxyfluorescein diacetate succinimdyl ester (CFSE) methods. In particular the expression of the specific markers of both ADSCs, β1 Integrin (CD29) and Thy-1 (CD90) and SMCs, Myosin Heavy Chain (MHC) were investigated through immunoflourescent microscopy and flow cytometric analysis. Up and down regulation of genes involved in the human mesenchymal stem cell array were analysed through Reverse Transcriptase Polymerase Chain Reaction (RTPCR)...
|
197 |
Application of cell cultures to the study of differentiation in Xenopus laevis : effects of the environment on the proliferation and behaviour of differentiating amphibian cellsLaskey, R. A. January 1970 (has links)
No description available.
|
198 |
Ubiquitin gene expression during differentiation of Leishmania majorMa, Tosca Chiu Wah January 1987 (has links)
Leishmania major (L. major) is an intra-macrophage protozoan parasite which differentiates from a promastigote to an amastigote upon transmission from its insect vector at 25°C to its mammalian host at 37°C. This temperature shift occurs in the same range as that used to elicit the heat shock response in prokaryotes and higher eukaryotes in which the induction of genes encoding heat shock proteins is seen. Ubiquitin is a heat inducible protein and one of the most conserved eukaryotic proteins known. Genomic libraries made from major DNA were initially screened with the ubiquitin gene from yeast. DNA sequence analyses of positive clones revealed at least 5 ubiquitin coding elements arranged head to tail without intervening sequences. The predicted protein sequence showed that ubiquitin in Leishmania differs from that of yeast and barley at 5 out of 76 amino acid positions and from that of human at only 2 positions. Further characterization revealed another ubiquitin encoding locus believed to carry only one ubiquitin encoding element. Comparisons of ubiquitin mRNA levels from L. major grown at 26°C, 37°C, and 42°C suggest that ubiquitin gene expression in these particular parasites is constitutive and that prolonged exposure at a non-lethal temperature results in a reduction of ubiquitin-specific mRNA. However, a direct correlation between parasite differentiation and ubiquitin gene expression was not defined as it could not be determined whether the described experimental conditions actually established differentiated states of L. major. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
|
199 |
The role of cyclic AMP and differentiation-inducing factor in stalk cell differentiation during the development of the cellular slime mold Dictyostelium discoideumSobolewski, Andre January 1987 (has links)
The role of cyclic AMP and a differentiation-indueing factor (DIF) in the differentiation of stalk cells was investigated in the cellular slime mold Dictyostelium discoideum. In this organism, starvation triggers the aggregation of amoebae into multicellular masses within which a simple, well-regulated pattern of partially differentiated cells is formed and which ultimately form fruiting bodies comprised of spore and stalk cells.
In a monolayer system at low cell densities, stalk cell formation is dependent on the presence of both cyclic AMP and DIF. Both factors act within a short time of each other, induction by cyclic AMP preceding induction by DIF, beginning between 8 to 10 hours of incubation in monolayers, and progressively committing an increasing proportion of the cells in monolayer to form stalk cells. The relative effectiveness of analogues of cyclic AMP to induce stalk cell formation in monolayers indicates that the well-characterized cell surface cyclic AMP receptor most probably mediates the action of cyclic AMP. Although this receptor appears early during aggregation, it does not become activated until later during development in vivo, probably because the cyclic AMP concentrations within developing cell masses must build up to levels higher than those in aggregation streams. The finding that caffeine inhibits stalk cell formation in low density monolayers and that the permeable analogue 8-Bromo-cyclic AMP can partially reverse this inhibition suggests that activation of this receptor leads to an increase in internal cyclic AMP levels as one of the steps in stalk cell differentiation.
The finding that the expression in low density monolayers of AP IV, a cell-type non-specific isozyme of acid phosphatase, was cyclic AMP-dependent is consistent with the view that cyclic AMP induces non-specific postaggregative gene expression during development in vivo. The findings that the expression of pre-stalk arid stalk cell specific antigens and of the pre-stalk cell specific isozyme AP II was DIF-dependent provide good evidence for the idea that both pre-stalk and stalk cell formation are induced by DIF. The fact that isolated pre-stalk cells require DIF for stalk cell formation in low density monolayers further supports this idea.
Whereas cells independent of DIF for stalk cell formation in monolayers appear immediately after cyclic AMP-independent cells during differentiation in low density monolayers, DIF-independent cells appear considerably later during development in vivo. This evidence and the fact that developing cell masses contain elevated levels of DIF lead to the postulate that the factor(s) which triggers the formation of fruiting bodies also controls the pre-stalk to stalk cell conversion. / Science, Faculty of / Botany, Department of / Zoology, Department of / Graduate
|
200 |
The Role of N6-methyladenosine RNA Methylation in the Regulation of Hematopoietic Stem CellsLee, Heather January 2020 (has links)
Hematopoietic stem cells (HSCs) give rise to all blood cells and are characterized by their ability for life-long self-renewal and multilineage differentiation. HSC function is regulated by complex cell-intrinsic and -extrinsic pathways, but these regulatory mechanisms are not completely understood. Recent work has demonstrated that the epitranscriptional modification N6-methyladenosine (m6A) has important roles in the regulation of many physiologic and pathologic processes in various cell types, but it was previously unknown if and how m6A may regulate adult HSC function. In this work, I uncover the role for m6A in HSC regulation, both cell-intrinsically in regulating HSC differentiation and cell–extrinsically by regulating the formation the HSC bone marrow niche.
|
Page generated in 0.1408 seconds