201 |
An ultrastructural and light microscopic study of melanocyte differentiation in chick embryosStander, Cornelia Steynberg January 1991 (has links)
The embryonic source and chemical nature of those factor/s directing the in vivo differentiation of melanocytes from crest cells are as yet unknown. To begin to address this issue, it is important to establish exactly when and where these signa/s first exert their effects. Therefore, in the present study, overtly differentiated melanocytes containing melanin were quantitated in developing Black Australorp X New Hampshire Red chick embryos. In contrast to previous studies, it was found that embryos synthesize melanin from as early as Day 5 of development, and that at this stage, the melanocytes are predominantly dermally located. Between 5 and 8 days, the numbers of both dermal and epidermal melanocytes increase, after which the dermal melanocyte population declines rapidly while the number of epidermal melanocytes continues to increase. These findings suggest that premelanocytes do not have to be epidermally located to initiate terminal differentiation and implicate the dermis as a possible source of melanocyte inducing factor/s. The next step was to examine stages of development prior to the onset of pigment production. For this reason, tyrosinase was purified for use as antigen in the production of a polyclonal antibody. The antibody was tested for specificity by western blotting, - immunocytochemistry and immunoinhibition procedures. Lack of specificity was demonstrated, rendering it unsuitable as an antibody marker for early melanocytes. Fowl melanocytes are thought to differentiate into either eumelanosome- or pheomelanosome synthesizing cells. To test the validity of this concept, embryonic skin of the red/black cross breed were screened for possible mixed type melanocytes by electron microscopy. The melanocytes contained melanosomes with a matrix of irregularly arranged filaments amongst typical eumelanogenic melanosomes. This suggests that these chick melanocytes may synthesize both eumelanosomes and pheomelanosomes in single cells. In a further study on pure breeding New Hampshire Reds, it was found that the melanocytes contained a mixture of typical and less typical pheomelanosomes. Outer membrane indentations in the latter melanosome type suggest that tyrosinase may enter these pheomelanosomes by a mechanism related to that proposed for the melanosomes of goldfish.
|
202 |
The integrative role of uPAR in outside-in signalling in human oesophageal squamous cell carcinoma cellsDahan, Yael-Leah 27 August 2012 (has links)
Early investigations of the urokinase type plasminogen activator (uPA) receptor (uPAR) and
its ligand, uPA, were limited to their role in degradation of the extracellular matrix (ECM)
and invasion. Emerging evidence revealed that uPAR and its relationship with uPA and/or
transmembrane proteins, such as the integrins, affects cell-ECM adhesion events and
proliferation. These events are tightly coordinated and essential for epithelial tissue
development. However, unregulated expression of molecules involved in cell adhesion and
proliferation plays a significant role in tumour development and metastasis. The
overexpression of uPAR is linked to several cancer types, including human oesophageal
squamous cell carcinoma (HOSCC). This study examines the contribution of uPAR, and its
communication with extracellular components, to cell-ECM adhesion and/or proliferation of
HOSCC cells. The confirmation of the uPAR and 1-integrin expression as well as uPA
secretion in the HOSCC cells lines, established these lines as excellent models for further
investigation. In all the HOSCC cell lines, uPAR associated with integrin-linked kinase, a
scaffolding protein in cell-ECM adhesion events. Data presented in this investigation
confirmed that the interaction of uPAR with uPA or 1-integrin contributed to adhesion of the
HOSCC cell lines on collagen type I and vitronectin. It was clearly established that uPAR also
played a part in the proliferation of all the HOSCC cell lines. The uPAR role in proliferation
is influenced by: a) The absence or presence of collagen type I or vitronectin substrates; b)
The activation of uPAR by endogenous uPA; c) The uPAR/1-integrin interaction; d) the
presence of transforming growth factor and epidermal growth factor. In the current study, it
was successfully demonstrated that uPAR, and its relationship with the ECM and growth
factors, contributes to adhesion and proliferation during the progression of HOSCC. This
gives uPAR a considerable value as a therapeutic target for HOSCC.
|
203 |
Matrix Property-Controlled Stem Cell Differentiation for Cardiac and Skeletal Tissue RegenerationXu, Yanyi January 2015 (has links)
No description available.
|
204 |
ATP, trehalose, glucose, and ammonium ion levels in the two cell types of Dictyostelium discoideumWilson, Jeanne Burrowbridge 12 June 2010 (has links)
Ultra-microfluorometric techniques were adapted to follow several compounds related to energy metabolism through the developmental cycle of Dictyostelium discoideum. Each compound (ATP, trehalose, glucose, and ammonium ion) was found to be present in stalk and/or spore cells.
The accumulation of NH₄⁺ was interpreted as an indication of protein degradation, a source of energy in this organism. During the early stages of differentiation NH₄⁺ was localized only in stalk cells. However, it accumulated in spore cells during culmination such that levels were comparable in the two cell types by the end of development. Trehalose, an energy source for germinating spores, was found in both cell types but was preferentially degraded in stalk cells late in development. Glucose, the degradation product of trehalose, was localized in stalk cells and varied inversely with trehalose in prestalk cells. ATP was not localized in a specific cell type during development. However, ATP declined in stalk cells at an earlier stage of development. These findings emphasize the need for knowledge of cell-specific events involved in the differentiation of this and other organisms. / Master of Science
|
205 |
The role of the stubble protease in RhoA signaling during Drosophila imaginal disc morphogenesisMou, Xiaochun 01 January 2004 (has links)
No description available.
|
206 |
Convolutional neural network-based program to predict lymph node metastasis of non-small cell lung cancer using ¹⁸F-FDG PET / ¹⁸F-FDG PETから非小細胞肺癌のリンパ節転移を予測する畳み込みニューラルネットワークの開発木寺, 英太郎 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25495号 / 医博第5095号 / 新制||医||1073(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 溝脇 尚志, 教授 伊達 洋至, 教授 黒田 知宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
207 |
Role of peroxisome proliferator-activated receptor beta (PPAR[beta]) in lipid homeostasis and adipocyte differentiation.January 2007 (has links)
Li, Sui Mui. / On t.p. "beta" appears as the Greek letter. / Thesis submitted in: December 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 182-189). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.v / Table of contents --- p.vi / List of figures --- p.xii / List of appendices --- p.xix / Abbreviations --- p.xx / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- Role of PPARP in adipocyte differentiation - an in vitro study --- p.20 / Chapter 2.1 --- Introduction --- p.21 / Chapter 2.2 --- Materials and Methods --- p.23 / Chapter 2.2.1 --- Preparation ofPPARβ (+/+) and PPARβ (-/-) MEFs --- p.23 / Chapter 2.2.1.1 --- Materials --- p.23 / Chapter 2.2.1.2 --- Methods --- p.23 / Chapter 2.2.1.2.1 --- Isolation of MEFs --- p.23 / Chapter 2.2.1.2.2 --- Passage ofMEF culture --- p.25 / Chapter 2.2.2 --- Genotyping of PPARβ (+/+) and PPARβ (-/-) MEFs --- p.25 / Chapter 2.2.2.1 --- Materials --- p.26 / Chapter 2.2.2.2 --- Methods --- p.26 / Chapter 2.2.2.2.1 --- Primer design --- p.26 / Chapter 2.2.2.2.2 --- Genomic DNA extraction --- p.27 / Chapter 2.2.2.2.3 --- PCR reaction --- p.29 / Chapter 2.2.3 --- Western blotting of PPARβ(+/+) and PPARβ (-/-) MEFs --- p.30 / Chapter 2.2.3.1 --- Materials --- p.30 / Chapter 2.2.3.2 --- Methods --- p.31 / Chapter 2.2.3.2.1 --- Preparation of nuclear extracts --- p.31 / Chapter 2.2.3.2.2 --- Western blot --- p.32 / Chapter 2.2.4 --- Induction of adipocyte differentiation of PPARβ (+/+) and PPARβ(-/-) MEFs --- p.33 / Chapter 2.2.4.1 --- Materials --- p.34 / Chapter 2.2.4.2 --- Methods --- p.34 / Chapter 2.2.4.2.1 --- Seeding ofMEFs --- p.34 / Chapter 2.2.4.2.2 --- Adipocyte differentiation --- p.35 / Chapter 2.2.5 --- Oil Red O staining of differentiated PPARβ(+/+) and PPARβ(-/-) MEFs --- p.36 / Chapter 2.2.5.1 --- Materials --- p.36 / Chapter 2.2.5.2 --- Method --- p.37 / Chapter 2.2.5.2.1 --- Oil Red O staining --- p.37 / Chapter 2.2.6 --- Determination of triglyceride-protein assay of differentiated PPARβ (+/+) and PPARβ (-/-) MEFs --- p.37 / Chapter 2.2.6.1 --- Materials --- p.39 / Chapter 2.2.6.2 --- Methods --- p.39 / Chapter 2.2.6.2.1 --- Lysis of differentiated MEFs --- p.39 / Chapter 2.2.6.2.2 --- Measurement of triglyceride concentration in cell lysate --- p.40 / Chapter 2.2.6.2.3 --- Measurement of protein concentration in cell lysate --- p.41 / Chapter 2.2.7 --- Preparation of PPARβ(+/+) and PPARβ (-/-) MEF RNA for RT-PCR and Northern blot analysis --- p.42 / Chapter 2.2.7.1 --- Materials --- p.42 / Chapter 2.2.7.2 --- Method --- p.42 / Chapter 2.2.7.2.1 --- RNA isolation --- p.42 / Chapter 2.2.8 --- RT-PCR analysis of differentiated PPARβ(+/+) and PPARβ (-/-) MEFs --- p.44 / Chapter 2.2.8.1 --- Materials --- p.45 / Chapter 2.2.8.2 --- Methods --- p.45 / Chapter 2.2.8.2.1 --- Primer design --- p.45 / Chapter 2.2.8.2.2 --- RT-PCR --- p.46 / Chapter 2.2.9 --- Northern blot analysis of differentiated PPARβ(+/+) and PPARβ (-/-) MEFs --- p.47 / Chapter 2.2.9.1 --- Materials --- p.48 / Chapter 2.2.9.2 --- Methods --- p.49 / Chapter 2.2.9.2.1 --- Preparation of cDNA probes for Northern blotting --- p.49 / Chapter 2.2.9.2.1.1 --- RNA extraction --- p.49 / Chapter 2.2.9.2.1.2 --- Primer design --- p.49 / Chapter 2.2.9.2.1.3 --- RT-PCR of extracted mRNA --- p.50 / Chapter 2.2.9.2.1.4 --- Subcloning of amplified cDNA products --- p.50 / Chapter 2.2.9.2.1.5 --- Screening of recombinant clones by phenol-chloroform extraction --- p.51 / Chapter 2.2.9.2.1.6 --- Confirmation of the recombinant clones by restriction enzyme site mapping --- p.52 / Chapter 2.2.9.2.1.7 --- Confirmation of the recombinant clones by PCR method --- p.52 / Chapter 2.2.9.2.1.8 --- Mini-preparation of plasmid DNA from the selected recombinant clones --- p.54 / Chapter 2.2.9.2.1.9 --- Preparation of cDNA probes --- p.54 / Chapter 2.2.9.2.1.10 --- Formaldehyde agarose gel electrophoresis of RNA --- p.55 / Chapter 2.2.9.2.1.11 --- Hybridization and color development --- p.56 / Chapter 2.3 --- Results --- p.58 / Chapter 2.3.1 --- Confirmation of PPARβ(+/+) and PPARβ (-/-) MEFs genotypes --- p.58 / Chapter 2.3.2 --- PPARβ (-/-) MEFs differentiated similarly to PPARβ(+/+) MEFs as measured by Oil Red O staining --- p.61 / Chapter 2.3.3 --- PPARβ (-/-) MEFs differentiated similarly to PPARβ(+/+) MEFs as reflected by their intracellular triglyceride contents --- p.64 / Chapter 2.3.4 --- PPARβ(-/-) MEFs expressed the adipocyte differentiation marker genes similarly to PPARβ (+/+) MEFs --- p.66 / Chapter 2.4 --- Discussion --- p.77 / Chapter Chapter 3 --- Role of PPARβ in adipocyte differentiation and lipid homeostasis - an in vivo study --- p.82 / Chapter 3.1 --- Introduction --- p.83 / Chapter 3.2 --- Materials and Methods --- p.85 / Chapter 3.2.1 --- Animal and high fat diet treatment --- p.85 / Chapter 3.2.1.1 --- Materials --- p.85 / Chapter 3.2.1.2 --- Method --- p.86 / Chapter 3.2.1.2.1 --- Animal treatment --- p.86 / Chapter 3.2.2 --- Tail-genotyping of PPARβ (+/+) and PPARβ (-/-) mice --- p.87 / Chapter 3.2.2.1 --- Materials --- p.87 / Chapter 3.2.2.2 --- Methods --- p.88 / Chapter 3.2.2.2.1 --- DNA extraction from tail --- p.88 / Chapter 3.2.2.2.2 --- PCR tail-genotyping --- p.89 / Chapter 3.2.3 --- "Measurement of serum triglyceride, cholesterol and glucose levels by enzymatic and spectrophometric methods" --- p.89 / Chapter 3.2.3.1 --- Materials --- p.90 / Chapter 3.2.3.2 --- Methods --- p.91 / Chapter 3.2.3.2.1 --- Serum preparation --- p.91 / Chapter 3.2.3.2.2 --- Measurement of serum triglycerides --- p.91 / Chapter 3.2.3.2.3 --- Measurement of serum cholesterol --- p.92 / Chapter 3.2.3.2.3 --- Measurement of serum glucose --- p.93 / Chapter 3.2.4 --- Measurement of serum insulin and leptin levels by ELISA --- p.94 / Chapter 3.2.4.1 --- Materials --- p.95 / Chapter 3.2.4.2 --- Methods --- p.95 / Chapter 3.2.4.2.1 --- Measurement of serum insulin --- p.95 / Chapter 3.2.4.2.2 --- Measurement of serum leptin --- p.97 / Chapter 3.2.5 --- "Histological studies of liver, interscapular BF and gonadal WF pads" --- p.99 / Chapter 3.2.5.1 --- Materials --- p.100 / Chapter 3.2.5.2 --- Methods --- p.100 / Chapter 3.2.5.2.1 --- "Fixation, dehydration, embedding in paraffin and sectioning" --- p.100 / Chapter 3.2.5.2.2 --- H&E staining --- p.101 / Chapter 3.2.6 --- Analyses of fecal lipid contents --- p.102 / Chapter 3.2.6.1 --- Materials --- p.102 / Chapter 3.2.6.2 --- Method --- p.103 / Chapter 3.2.6.2.1 --- Extraction of lipid contents from stools --- p.103 / Chapter 3.2.7 --- Statistical analysis --- p.104 / Chapter 3.3 --- Results --- p.105 / Chapter 3.3.1 --- Confirmation of genotypes by PCR --- p.105 / Chapter 3.3.2 --- PPARβ (-/-) mice were more resistant to high fat diet-induced obesity --- p.105 / Chapter 3.3.3 --- PPARβ (-/-) mice consumed similarly as to PPARβ (+/+) counterparts… --- p.122 / Chapter 3.3.4 --- Effect of high fat diet on organ weights --- p.128 / Chapter 3.3.4.1 --- PPARβ (-/-) mice were more resistant to high fat diet-induced liver hepatomegaly --- p.134 / Chapter 3.3.4.2 --- PPARβ (-/-) mice were resistant to high fat diet-induced increased white fat depots --- p.134 / Chapter 3.3.4.3 --- PPARβ (-/-) mice were resistant to high fat diet-induced increased brown fat mass --- p.137 / Chapter 3.3.5 --- Effect of high fat diet on organ histology --- p.142 / Chapter 3.3.5.1 --- PPARβ(-/-) mice were more resistant to high fat diet-induced liver steatosis --- p.143 / Chapter 3.3.5.2 --- No defect in white adipocyte expansion in PPARβ(-/-) mice upon high fat diet feeding --- p.153 / Chapter 3.3.5.3 --- No defect in brown adipocyte expansion in PPARβ (-/-) mice upon high fat diet feeding --- p.159 / Chapter 3.3.6 --- "Effect on high fat diet on serum cholesterol, triglyceride, glucose, insulin and leptin levels" --- p.164 / Chapter 3.3.6.1 --- "PPARβ (-/-) mice had a lower serum cholesterol level, but a similar triglyceride level as compared to PPARβ (+/+) mice upon high fat diet feeding" --- p.165 / Chapter 3.3.6.2 --- PPARβ (-/-) mice were resistant to high fat diet-induced insulin resistance --- p.167 / Chapter 3.3.6.3 --- PPARβ (-/-) mice had a similar serum leptin level as PPARβ (+/+) mice --- p.170 / Chapter 3.3.7 --- No decision made in fecal lipid content of PPARβ (+/+) and PPARβ (-/-) mice --- p.173 / Chapter 3.4 --- Discussion --- p.176 / References --- p.182 / Appendices --- p.190
|
208 |
An investigation of the effect of nerve growth factor in the early stages of neuronal differentiation.January 2007 (has links)
Yung, Him Shun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 133-146). / Abstracts in English and Chinese. / Abstract --- p.i / 論文摘要 --- p.iv / Acknowledgements --- p.vi / Publications based on work in this thesis --- p.vii / Abbreviations --- p.viii / Contents --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Objectives and overview of this study --- p.1 / Chapter 1.2 --- Rat pheochromocytoma (PC12) cells --- p.3 / Chapter 1.3 --- Prostanoids and their receptors --- p.4 / Chapter 1.4 --- Roles of prostanoids --- p.7 / Chapter 1.5 --- Nerve growth factor (NGF) and its receptors --- p.9 / Chapter 1.6 --- Change of gene expressions by NGF in PC12 cells --- p.10 / Chapter 1.7 --- Signaling pathways involved in NGF-induced differentiation of PC12 cells --- p.12 / Chapter 1.8 --- Classification of adenylyl cyclases --- p.14 / Chapter 1.9 --- Methods to study differentiation of PCI 2 cells --- p.15 / Chapter Chapter 2 --- Materials and Methods --- p.19 / Chapter 2.1 --- Materials --- p.19 / Chapter 2.2 --- Cell culture medium and buffers --- p.25 / Chapter 2.3 --- Buffers and solutions for assay of [3H]inositoI phosphates ([3H]IP) production --- p.25 / Chapter 2.4 --- Buffers and solutions for assay of [3H]cAMP production --- p.27 / Chapter 2.5 --- Buffers and solutions for Western blotting --- p.28 / Chapter 2.6 --- Methods --- p.30 / Chapter 2.6.1 --- Maintenance of PC12 cells --- p.30 / Chapter 2.6.2 --- General culture condition of PCI2 cells for NGF treatment --- p.31 / Chapter 2.6.3 --- Determination of phospholipase C activity in PC12 cells --- p.31 / Chapter 2.6.3.1 --- Principle of assay --- p.31 / Chapter 2.6.3.2 --- Column preparation --- p.32 / Chapter 2.6.3.3 --- Measurement of [3H]IP production --- p.33 / Chapter 2.6.3.4 --- Data analysis --- p.34 / Chapter 2.6.4 --- Determination of adenylyl cyclase activity in PC12 cells --- p.35 / Chapter 2.6.4.1 --- Principle of assay --- p.35 / Chapter 2.6.4.2 --- Column preparation --- p.35 / Chapter 2.6.4.3 --- Measurement of [3H]cAMP production --- p.36 / Chapter 2.6.4.4 --- Data analysis --- p.37 / Chapter 2.6.5 --- Determination of neurofilament protein expression in PC12 cells by Western blotting --- p.38 / Chapter 2.6.6 --- Determination of adenylyl cyclase isoform expression in PC12 cells by reverse transcriptase-polymerase chain reaction (RT-PCR) --- p.39 / Chapter 2.6.6.1 --- Isolation of total cellular RNA --- p.39 / Chapter 2.6.6.2 --- Synthesis of first strand cDNA by reverse transcription (RT) --- p.40 / Chapter 2.6.6.3 --- Polymerase Chain Reaction (PCR) --- p.41 / Chapter 2.6.6.4 --- Agarose gel electrophoresis --- p.41 / Chapter 2.6.7 --- Neurite quantification --- p.42 / Chapter 2.6.8 --- Trypan blue exclusion test --- p.42 / Chapter Chapter 3 --- Results --- p.45 / Chapter 3.1 --- Characterization of prostanoid receptor expression in PC12 cells . --- p.45 / Chapter 3.1.1 --- Study of the presence of Gq-coupled prostanoid receptors --- p.45 / Chapter 3.1.2 --- Study of the presence of Gs-co»pled prostanoid receptors --- p.47 / Chapter 3.1.3 --- Study of the presence of Gi-coupled prostanoid receptors --- p.48 / Chapter 3.1.4 --- Further proof of EP3 expression in PC12 cells --- p.50 / Chapter 3.1.5 --- Discussion --- p.51 / Chapter 3.2 --- Time course effect of NGF on PC12 cells --- p.65 / Chapter 3.2.1 --- Effect of NGF on PGE2-mediated inhibition of forskolin-stimulated [3H]cAMP production --- p.65 / Chapter 3.2.2 --- Effect of NGF on basal and forskolin-stimulated [3H]cAMP production --- p.67 / Chapter 3.2.3 --- Acute effect of NGF on [3H]cAMP production --- p.70 / Chapter 3.2.4 --- Effect of NGF withdrawal on basal and forskolin-stimulated [3H]cAMP production --- p.71 / Chapter 3.2.5 --- Effect of NGF on adenylyl cyclase gene expression --- p.72 / Chapter 3.2.6 --- Discussion --- p.74 / Chapter 3.3 --- Quantification of the degree of differentiation of PC12 cells --- p.89 / Chapter 3.3.1 --- Expression of neurofilament protein as a marker of differentiation --- p.89 / Chapter 3.3.2 --- Neurite assays --- p.90 / Chapter 3.3.2.1 --- Manual assessment of PC12 cells --- p.90 / Chapter 3.3.2.2 --- Quantification of images of PC1 2 cells --- p.91 / Chapter 3.3.3 --- Discussion --- p.93 / Chapter 3.4 --- Adenosine A2a receptor activity in PC12 cells --- p.106 / Chapter 3.4.1 --- Effect of NGF on A2Areceptor-mediated [3H]cAMP production --- p.106 / Chapter 3.4.2 --- Synergistic activation of adenylyl cyclase by A2A receptor and forskolin --- p.108 / Chapter 3.4.3 --- Chronic and acute effect of ADA and ZM241385 on [3H]cAMP production --- p.109 / Chapter 3.4.3.1 --- Chronic effect of ADA and ZM241385 --- p.110 / Chapter 3.4.3.2 --- Acute effect of ADA and ZM241385 --- p.111 / Chapter 3.4.4 --- Discussion --- p.112 / Chapter Chapter 4 --- Discussion and future perspectives --- p.121 / Chapter 4.1 --- Discussion --- p.121 / Chapter 4.2 --- Future perspectives --- p.131 / References --- p.133
|
209 |
Investigation of the role of CD137 (4-1BB) costimulation in human CD8⁺ T cell responsesBerger, DeAnna L. January 2004 (has links)
Thesis (M.S.)--University of Missouri--Columbia, 2004. / Typescript. Includes bibliographical references (leaves 97-111). Also issued on the Internet.
|
210 |
Mitochondrial function provides instructive signals for activation-induced B cell fates / ミトコンドリアによる活性化B細胞運命決定機構の解析Jang, Kyoung-Jin 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18899号 / 医博第4010号 / 新制||医||1009(附属図書館) / 31850 / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 三森 経世, 教授 岩井 一宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.1479 seconds