• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of Cell Geometry on the Behaviour of Composite Cellular Beams

Lane, Percy V. 11 1900 (has links)
Two types of tests are reported in this thesis: (1) tests of push -out specimens and (2) tests of composite cellular T -beams. The components of the composite members tested were short lengths of steel I -beams and concrete ribbed slabs. The ribbed slabs were formed by the inclusion of cellular sheet steel decking. Various rib sizes were used by varying the cell height and cell width of the decking. The components of a specimen were tied together by stud shear connectors. The tests were made to investigate the influence of cell geometry on the behaviour of composite cellular members and to provide a rational approach to their design. / Thesis / Master of Engineering (MEngr)
2

Suspended Micro/Nanofiber Hierarchical Scaffolds for Studying Cell Mechanobiology

Wang, Ji 27 March 2015 (has links)
Extracellular matrix (ECM) is a fibrous natural cell environment, possessing complicated micro-and nano- architectures, which provides signaling cues and influences cell behavior. Mimicking this three dimensional environment in vitro is a challenge in developmental and disease biology. Here, suspended multilayer hierarchical nanofiber assemblies fabricated using the non-electrospinning STEP (Spinneret based Tunable Engineered Parameter) fiber manufacturing technique with controlled fiber diameter (microns to less than 100 nm), orientation and spacing in single and multiple layers are demonstrated as biological scaffolds. Hierarchical nanofiber assemblies were developed to control single cell shape (shape index from 0.15 to 0.57), nuclei shape (shape index 0.75 to 0.99) and focal adhesion cluster length (8-15 micrometer). To further investigate single cell-ECM biophysical interactions, nanofiber nets fused in crisscross patterns were manufactured to measure the "inside out" contractile forces of single mesenchymal stem cells (MSCs). The contractile forces (18-320 nano Newton) were found to scale with fiber structural stiffness (2 -100 nano Newton/micrometer). Cells were observed to shed debris on fibers, which were found to exert forces (15-20 nano Newton). Upon CO? deprivation, cells were observed to monotonically reduce cell spread area and contractile forces. During the apoptotic process, cells exerted both expansive and contractile forces. The platform developed in this study allows a wide parametric investigation of biophysical cues which influence cell behaviors with implications in tissue engineering, developmental biology, and disease biology. / Master of Science
3

Numerical Approximation of Reaction and Diffusion Systems in Complex Cell Geometry

Chaudry, Qasim Ali January 2010 (has links)
<p>The mathematical modelling of the reaction and diffusion mechanism of lipophilic toxic compounds in the mammalian cell is a challenging task because of its considerable complexity and variation in the architecture of the cell. The heterogeneity of the cell regarding the enzyme distribution participating in the bio-transformation, makes the modelling even more difficult. In order to reduce the complexity of the model, and to make it less computationally expensive and numerically treatable, Homogenization techniques have been used. The resulting complex system of Partial Differential Equations (PDEs), generated from the model in 2-dimensional axi-symmetric setting is implemented in Comsol Multiphysics. The numerical results obtained from the model show a nice agreement with the in vitro cell experimental results. The model can be extended to more complex reaction systems and also to 3-dimensional space. For the reduction of complexity and computational cost, we have implemented a model of mixed PDEs and Ordinary Differential Equations (ODEs). We call this model as Non-Standard Compartment Model. Then the model is further reduced to a system of ODEs only, which is a Standard Compartment Model. The numerical results of the PDE Model have been qualitatively verified by using the Compartment Modeling approach. The quantitative analysis of the results of the Compartment Model shows that it cannot fully capture the features of metabolic system considered in general. Hence we need a more sophisticated model using PDEs for our homogenized cell model.</p> / Computational Modelling of the Mammalian Cell and Membrane Protein Enzymology
4

Numerical Approximation of Reaction and Diffusion Systems in Complex Cell Geometry

Chaudhry, Qasim Ali January 2010 (has links)
The mathematical modelling of the reaction and diffusion mechanism of lipophilic toxic compounds in the mammalian cell is a challenging task because of its considerable complexity and variation in the architecture of the cell. The heterogeneity of the cell regarding the enzyme distribution participating in the bio-transformation, makes the modelling even more difficult. In order to reduce the complexity of the model, and to make it less computationally expensive and numerically treatable, Homogenization techniques have been used. The resulting complex system of Partial Differential Equations (PDEs), generated from the model in 2-dimensional axi-symmetric setting is implemented in Comsol Multiphysics. The numerical results obtained from the model show a nice agreement with the in vitro cell experimental results. The model can be extended to more complex reaction systems and also to 3-dimensional space. For the reduction of complexity and computational cost, we have implemented a model of mixed PDEs and Ordinary Differential Equations (ODEs). We call this model as Non-Standard Compartment Model. Then the model is further reduced to a system of ODEs only, which is a Standard Compartment Model. The numerical results of the PDE Model have been qualitatively verified by using the Compartment Modeling approach. The quantitative analysis of the results of the Compartment Model shows that it cannot fully capture the features of metabolic system considered in general. Hence we need a more sophisticated model using PDEs for our homogenized cell model. / Computational Modelling of the Mammalian Cell and Membrane Protein Enzymology
5

Micromechanical modelling of creep in wooden materials

Falkeström, Oskar, Coleman, Kevin, Nilsson, Malin January 2021 (has links)
Wood is a complex organic orthotropic viscoelastic material with acellular structure. When stressed, wood will deform over timethrough a process called creep. Creep affects all wooden structureand can be difficult, time-consuming and expensive to measure. For this thesis, a simple computer model of the woodenmicrostructure was developed. The hypothesis was that the modelledmicrostructure would display similar elastic and viscoelasticproperties as the macroscopic material. The model was designed by finding research with cell geometries ofconiferous trees measured. The model considered late- and earlywoodgeometries as well as growth rings. Rays were ignored as they onlycomposed 5-10% of the material. By applying a finite element method, the heterogeneous late- andearlywood cells could be homogenized by sequentially loading thestrain vector and calculating the average stress. The computer model produced stiff but acceptable values for theelastic properties. Using the standard linear solid method to modelviscoelasticity, the computer model assembled creep curvescomparable to experimental results. With the model sufficiently validated, parametric studies on thecell geometry showed that the elastic and viscoelastic propertieschanged greatly with cell shape. An unconventional RVE was alsotested and shown to give identical result to the standard RVE. Although not perfect, the model can to a certain degree predict theelastic and viscoelastic characteristics for wood given itscellular geometry. Inaccuracies were thought to be caused byassumptions and approximations when building the model.
6

Aerodynamic Analysis Of Grid Fins Using Analytical And Computational Methods

Theerthamalai, P 07 1900 (has links)
Grid fins (lattice fins) are used as a lifting and control surface for highly manoeuvrable missiles. Grid fins also find their applications for air-launched submunitions. The main advantages are its low hinge moment requirement and good high angle of attack performance characteristics. Two dimensional analysis has been carried out using linear and shock-expansion theo- ries. The results indicate that above certain depth-to-height ratio, (called critical depth-to-height ratio,) the local normal force becomes negative due to shock reflection from the opposite side. Hence, depth (chord) for grid fin cell should not exceed a critical value. A prediction method has been developed for the estimation of aerodynamic character- istics of grid fin-body combinations at supersonic Mach numbers based on shock-expansion theory. Body upwash theory has been used for the effect of body; method of images has been used for carry-over forces onto the body. Empirical relation has been used for the modelling of separated body vortices and their effect on the leeward side fins. The method has been validated with experimental results for three configurations. The comparison is good for individual fin characteristics as well as overall characteristics for all the cases at higher supersonic Mach numbers. For lower supersonic Mach numbers at higher angles of attack, the prediction deviates from experiment. The reason for the deviation is due to shock detachment and shock reflection from opposite side, which is not modelled in the present method. Vortex lattice method has been used for prediction of linear aerodynamic character- istics of grid-fins at subsonic Mach numbers. Empirical relation based on trends from available experimental data has been used for the non-linear effect. The method has been validated with experimental results for several configurations without and with control surface deflections. The predicted aerodynamic characteristics compare well with experimental results for all the cases and the difference is within 15%. Based on the subsonic and supersonic analytical methods, a prediction code for the aerodynamic analysis of configuration with grid fins has been developed. Flow field computations inside isolated cells have been carried out using CFD code, PARAS-3D. Effects of depth-to-height ratio, web thickness, web leading edge angle and cell width-to-height ratio have been studied. Increase in thickness reduces the critical depth and increases the normal force. This increment in normal force is due to shock wave formation at the expansion side and its interaction with the opposite side. Effect of cell cross sectional shape has been studied using inviscid computation over isolated cells. Square, right triangular, equilateral triangular and hexagonal cross sections have been considered for this study. The normal force for square cell at zero roll is higher compared to 45 deg roll (diamond shape). Triangular cells show large variation in normal force with roll orientation due to large variation in projected area with roll angle. To compare the characteristics of different cross sectional cells, the normal force is normalised with respect to total internal web area. The comparison shows that the hexagonal cell gives maximum normal force and right triangular cell gives the minimum. Packaging efficiency of different cross sections is analysed by normalising the normal force with frontal area. The results show that triangular cells are preferred for packaging efficiency. Viscous flow computations over complete configuration have been carried out using FLUENT. GAMBIT has been used for geometry definition and grid generation. Hexahedral finite volumes are used to generate the grids including the nose region. Flow computations have been carried out at supersonic Mach numbers. To reduce the compu- tational time, Flow computations upto 0.5 calibre ahead of grid fin have been carried out with body-alone configuration. Flow over the fin-body section has been computed sep- arately taking the inlet pressure condition from the body-alone computed results. This procedure has reduced the grid size to around 1/5th and the computations converged faster due to imposition of converged solution at the pressure inlet. The computed results on the body show that the Flow separation occurs on the lee- ward side of the body and formation of separated vortices. The comparison of pressure distribution on the body with experiment is good. Flow computations over the fin-body section have been carried out at different Mach numbers and angles of attack. The computed normal force coefficient on the horizontal fin compares well with experimental data. Computations with fin deflection of -15 deg have also been carried out and the computed results are within 10% of the experimental data. Flow computations over another grid fin configuration have been carried out at dif- ferent roll angles. The comparison of individual fin force and overall normal force and pitching moment coefficients with experiment is good. The comparison demonstrates the capability of prediction methods as well as CFD in analysing aerodynamic performance of grid fin configurations.

Page generated in 0.0456 seconds