1 |
Osteoblast Behaviour on Injectable Biomaterials Intended for Augmentation of Vertebral Compression FracturesRamstedt, Sandra January 2007 (has links)
Biomaterials used for stabilization of compressed vertebraes due to osteoporosis, have mainly been based on resin materials, like PMMA (polymethyl methacrylate), but have recently expanded to consist of injectable ceramics, such as calcium-aluminate. In this in vitro study human osteoblast-like cells, MG-63, were cultured on three different injectable biomaterials based on: Ca-aluminate, Bis-GMA (bisphenol A-glycidylmethacrylate) and PMMA, to investigate the cellular response elicited by these materials. Cell proliferation was measured by the NucleoCounter® system, cell viability was investigated by LDH (lactate dehydrogenase) analysis, cell differentiation and mineralization was evaluated by mRNA gene expression of the osteoblastic markers: ALP (alkaline phosphatase), OC (osteocalcin) and COLL-I (collagen type I) by qPCR (quantitative polymerase chain reaction) analysis. Two control materials were used: TCP (tissue culture polystyrene, negative control) and PVC (polyvinyl chloride, positive control). The results showed that all the bone cement materials were non-toxic and biocompatible, i.e. they provided good cell viability and proliferation of the MG-63 cells. They are specific for bone cells, since they expressed high values of the osteoblast-specific differentiation markers, and are thus promising as injectable bone cement materials. Among the bone cements, Xeraspine appears to be the most biocompatible material for bone cells. It is followed by Cortoss and then Vertebroplastic.
|
2 |
Osteoblast Behaviour on Injectable Biomaterials Intended for Augmentation of Vertebral Compression FracturesRamstedt, Sandra January 2007 (has links)
<p>Biomaterials used for stabilization of compressed vertebraes due to osteoporosis, have mainly been based on resin materials, like PMMA (polymethyl methacrylate), but have recently expanded to consist of injectable ceramics, such as calcium-aluminate. In this in vitro study human osteoblast-like cells, MG-63, were cultured on three different injectable biomaterials based on: Ca-aluminate, Bis-GMA (bisphenol A-glycidylmethacrylate) and PMMA, to investigate the cellular response elicited by these materials. Cell proliferation was measured by the NucleoCounter® system, cell viability was investigated by LDH (lactate dehydrogenase) analysis, cell differentiation and mineralization was evaluated by mRNA gene expression of the osteoblastic markers: ALP (alkaline phosphatase), OC (osteocalcin) and COLL-I (collagen type I) by qPCR (quantitative polymerase chain reaction) analysis. Two control materials were used: TCP (tissue culture polystyrene, negative control) and PVC (polyvinyl chloride, positive control). The results showed that all the bone cement materials were non-toxic and biocompatible, i.e. they provided good cell viability and proliferation of the MG-63 cells. They are specific for bone cells, since they expressed high values of the osteoblast-specific differentiation markers, and are thus promising as injectable bone cement materials. Among the bone cements, Xeraspine appears to be the most biocompatible material for bone cells. It is followed by Cortoss and then Vertebroplastic.</p>
|
3 |
Integrative Analyses of Diverse Biological Data SourcesJanuary 2011 (has links)
abstract: The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation. / Dissertation/Thesis / Ph.D. Industrial Engineering 2011
|
4 |
Příprava a charakterizace nanočástic pro in vitro buňečné studie / Preparation and characterization of nanoparticles for in vitro cell studiesHladík, Martin January 2015 (has links)
This thesis deals with the preparation, characterization methods and in vitro imaging of nanoparticles with great potential for medical diagnostics. A key role in this work occupy nanoparticles comprising a core of calcium tungstate, CaWO4, covered by a natural polysaccharide together serve as a suitable model contrast agent for cell imaging techniques. CaWO4 natural properties such as the absorption of X-rays, natural fluorescence capabilities and capacities for doping fluorescently active lanthanides, makes from nanoparticles suitable candidates for the position of contrast agents for imaging in the diagnosis of oncological diseases. Moreover, by coverage of the inorganic core by natural polysaccharide nanoparticles reach the desired size and the possibility of active targeting to specific or nonspecific interactions with the cell membrane, which are key factors in in vitro cell studies. It was found the most suitable synthesis both doped and undoped core of this model reaching the formation of spherical particles of colloidal dimensions. Doping was realized by red fluorescent trivalent europium, Eu3+ , and green fluorescent trivalent terbium, Tb3+ , and neither of these dopants affected the original crystalline structure CaWO4. In the next stage, these fluorescent nuclei successfully dispersed...
|
Page generated in 0.0532 seconds