• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 9
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 53
  • 34
  • 25
  • 14
  • 13
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

IMMUNE CROSS-REACTIVITY BETWEEN INFECTIOUS BOVINE RHINOTRACHEITIS VIRUS AND HUMAN CYTOMEGALOVIRUS.

Abraham, Kristin Marie. January 1982 (has links)
No description available.
32

Efeitos da Anandamida sobre a esfera neuroimune de camundongos: avaliação comportamental, endócrina e de parâmetros da atividade imune adquirida / Anandamide effects on neuroimmune interactions in mice: Behavioral, endocrine, and parameters of adaptative immune activity evaluation

Ribeiro, Alison 06 December 2007 (has links)
A neuroimunomodulação é um ramo da ciência que estuda as inter-relações existentes entre o SNC e o SI. O termo inter-relações foi empregado porque, sabe-se hoje serem estas relações bidirecionais. Conhecendo-se a existência desta comunicação, não é difícil de se supor que substâncias que atuem no sistema neuro-endócrino tenham a capacidade de influenciar as respostas imunes seja por uma ação neuroimune indireta ou por outra que se faça diretamente nas células imunes. Os canabinóides (endógenos, derivados da planta e sintéticos) apresentam um amplo espectro de ações, dentre as quais cabe destacar aquelas sobre o comportamento (ansiedade e medo), o sistema neuro-endócrino (ativação do eixo HHA) e imune (resposta imune inata e adquirida). Estes efeitos são geralmente atribuídos à ligação dos canabinóides a receptores específicos presentes no SNC (receptores CB1) e na periferia (receptores CB2). Neste sentido, buscamos neste trabalho avaliar os efeitos da Anandamida (AEA), uma agonista canabinóide endógeno, sobre o comportamento, a ativação do eixo HHA e alguns parâmetros de atividade imune adquirida, e o fizemos à luz de mecanismos neuroimunomodulatórios. Nossos resultados mostraram que os efeitos da AEA sobre o comportamento são dependentes da dose e, também, do tempo de latência para as observações. Neste sentido, 10 minutos após a administração de doses crescentes de AEA observou-se, tanto no campo aberto como no LCE, um efeito que seguiu um padrão de curva em U invertido dependente da dose. Nossos resultados mostraram, também, que a AEA na dose de 0,1mg/kg administrada 90 minutos antes das observações, aumentou o tempo gasto pelos animais em movimento na zona periférica e diminui o tempo gasto em movimento na zona central do campo aberto. Mostrou-se, ainda, que a AEA na dose de 0,1mg/kg aumentou acentuadamente os níveis séricos de corticosterona nos animais medidos 45 e 90 minutos após a administração. Finalmente, mostrou-se que uma dose de 0,1mg/kg de AEA previamente a uma imunização com OVA promoveu um aumento da reposta de hipersensibilidade do tipo tardia (DTH) e um aumento na porcentagem de proliferação de células T CD4+. Estes resultados em seu conjunto permitem sugerir que a AEA (0,1mg/kg) administrada 90 minutos antes das observações tenha se comportado como um estressor químico, promovendo efeito semelhante ao de ansiogênicos no campo aberto e aumentando os níveis séricos de corticosterona; esses níveis aumentados de corticosterona teriam sido os responsáveis pelo aumento da resposta imune celular (Th1) observada. / Neuroimmunomodulation is a field of research concerned with the relationships between the CNS and the IS. The term relationship is frequently employed because it is assumed that such communication is bidirectional. In this regard, if we consider that this communication exists, it should be accetable that substances acting on the neuroendocrine system are able of modifying immune responses, either acting via a neuroimmune indirect pathway, or acting directly on immune cells. Cannabinoids (endogenous, plant derived, and synthetic) show a large spectrum of actions over the body. We emphasize here, behavioral (anxiety and fear), endocrine (HPA axis activation), and immune (innate and adaptative immunity) effects. These effects are generally attributed to cannabinoid bind to specific receptors present on CNS (CB1 receptors) and in the periphery (CB2 receptors). In this sense, we evaluated Anandamide (AEA, an endogenous cannabinoid agonist) effects, on behavior, HPA axis activation, and parameters of adaptative immunity, particularly neuroimmune relationships. Briefly, our results show that the AEA effects on behavior are dependent on the dose and time. Thus, 10 minutes after injection of growing increasing doses of AEA, we found in the open field and plus maze an inverted U-shape dose-response for AEA which is characteristic of cannabinoids in this type of behavioral evaluation. Additionally we show, that AEA 0,1mg/kg after 90 minutes of administration increased the time spent in the peripheral zone, and decreased the time spent in the central zone of the open field. Furthermore, we found that AEA 0.1mg/kg strongly increased the serum levels of corticosterone after 45 and 90 minutes of administration. Finally, we show that AEA 0.1mg/kg prior to immunization promoted an increase of delayed-type hypersensitivity (DTH) and an increase in the percentage of CD4+ T cell proliferation. These results allow us to suggest that AEA 0.1mg/kg 90 minutes after administration acted as a chemical stressor, promoting an anxiogenic-like effect in the open field, and increasing the serum levels of corticosterone. Additionally, the increased levels of corticosterone at the moment of antigenic exposition could be responsible for the increased cell-mediated immunity (Th1) observed.
33

Efeitos da Anandamida sobre a esfera neuroimune de camundongos: avaliação comportamental, endócrina e de parâmetros da atividade imune adquirida / Anandamide effects on neuroimmune interactions in mice: Behavioral, endocrine, and parameters of adaptative immune activity evaluation

Alison Ribeiro 06 December 2007 (has links)
A neuroimunomodulação é um ramo da ciência que estuda as inter-relações existentes entre o SNC e o SI. O termo inter-relações foi empregado porque, sabe-se hoje serem estas relações bidirecionais. Conhecendo-se a existência desta comunicação, não é difícil de se supor que substâncias que atuem no sistema neuro-endócrino tenham a capacidade de influenciar as respostas imunes seja por uma ação neuroimune indireta ou por outra que se faça diretamente nas células imunes. Os canabinóides (endógenos, derivados da planta e sintéticos) apresentam um amplo espectro de ações, dentre as quais cabe destacar aquelas sobre o comportamento (ansiedade e medo), o sistema neuro-endócrino (ativação do eixo HHA) e imune (resposta imune inata e adquirida). Estes efeitos são geralmente atribuídos à ligação dos canabinóides a receptores específicos presentes no SNC (receptores CB1) e na periferia (receptores CB2). Neste sentido, buscamos neste trabalho avaliar os efeitos da Anandamida (AEA), uma agonista canabinóide endógeno, sobre o comportamento, a ativação do eixo HHA e alguns parâmetros de atividade imune adquirida, e o fizemos à luz de mecanismos neuroimunomodulatórios. Nossos resultados mostraram que os efeitos da AEA sobre o comportamento são dependentes da dose e, também, do tempo de latência para as observações. Neste sentido, 10 minutos após a administração de doses crescentes de AEA observou-se, tanto no campo aberto como no LCE, um efeito que seguiu um padrão de curva em U invertido dependente da dose. Nossos resultados mostraram, também, que a AEA na dose de 0,1mg/kg administrada 90 minutos antes das observações, aumentou o tempo gasto pelos animais em movimento na zona periférica e diminui o tempo gasto em movimento na zona central do campo aberto. Mostrou-se, ainda, que a AEA na dose de 0,1mg/kg aumentou acentuadamente os níveis séricos de corticosterona nos animais medidos 45 e 90 minutos após a administração. Finalmente, mostrou-se que uma dose de 0,1mg/kg de AEA previamente a uma imunização com OVA promoveu um aumento da reposta de hipersensibilidade do tipo tardia (DTH) e um aumento na porcentagem de proliferação de células T CD4+. Estes resultados em seu conjunto permitem sugerir que a AEA (0,1mg/kg) administrada 90 minutos antes das observações tenha se comportado como um estressor químico, promovendo efeito semelhante ao de ansiogênicos no campo aberto e aumentando os níveis séricos de corticosterona; esses níveis aumentados de corticosterona teriam sido os responsáveis pelo aumento da resposta imune celular (Th1) observada. / Neuroimmunomodulation is a field of research concerned with the relationships between the CNS and the IS. The term relationship is frequently employed because it is assumed that such communication is bidirectional. In this regard, if we consider that this communication exists, it should be accetable that substances acting on the neuroendocrine system are able of modifying immune responses, either acting via a neuroimmune indirect pathway, or acting directly on immune cells. Cannabinoids (endogenous, plant derived, and synthetic) show a large spectrum of actions over the body. We emphasize here, behavioral (anxiety and fear), endocrine (HPA axis activation), and immune (innate and adaptative immunity) effects. These effects are generally attributed to cannabinoid bind to specific receptors present on CNS (CB1 receptors) and in the periphery (CB2 receptors). In this sense, we evaluated Anandamide (AEA, an endogenous cannabinoid agonist) effects, on behavior, HPA axis activation, and parameters of adaptative immunity, particularly neuroimmune relationships. Briefly, our results show that the AEA effects on behavior are dependent on the dose and time. Thus, 10 minutes after injection of growing increasing doses of AEA, we found in the open field and plus maze an inverted U-shape dose-response for AEA which is characteristic of cannabinoids in this type of behavioral evaluation. Additionally we show, that AEA 0,1mg/kg after 90 minutes of administration increased the time spent in the peripheral zone, and decreased the time spent in the central zone of the open field. Furthermore, we found that AEA 0.1mg/kg strongly increased the serum levels of corticosterone after 45 and 90 minutes of administration. Finally, we show that AEA 0.1mg/kg prior to immunization promoted an increase of delayed-type hypersensitivity (DTH) and an increase in the percentage of CD4+ T cell proliferation. These results allow us to suggest that AEA 0.1mg/kg 90 minutes after administration acted as a chemical stressor, promoting an anxiogenic-like effect in the open field, and increasing the serum levels of corticosterone. Additionally, the increased levels of corticosterone at the moment of antigenic exposition could be responsible for the increased cell-mediated immunity (Th1) observed.
34

Cell-Mediated Immunity of the Dog Lung

Galvin, Jennifer Baker 01 May 1983 (has links)
Cell-mediated immunity (CMI) in the lung has not been well characterized due to the lack of applicable tests. A major objective was to define pulmonary CMI serially in immunized and control lung lobes using the leukocyte procoagulant (LPCA) assay in young adult dogs. This was compared to a standard, but less reproducible CMI assay, macrophage migration inhibition facet (MIF). The CMI response, as measured by the LPCA assay, peaked in the blood 7 days after lung immunization. The pulmonary CMI response measured with cells obtained by bronchial lavage from the immunized and control lung lobes peaked at 9 to 12 days after intrapulmonary immunization with 10xx sheep red blood cells (SRBC). This peak pulmonary immune response corresponded with the day of lymphocyte influx into the lung. An attempt was made to increase the level of CMI in the lung by administration of muramyl dipeptide by two different routes. The administration of the adjuvant muramyl dipeptide (MDP) into the lung or given intravenously suppressed the CMI response in the lung after instillation of antigen (10xx SRBC). Four dogs were exposed to 239Puu2 when the dogs were one year old. When the dogs were 6 to 7 years old the pulmonary CMI was evaluated after lung immunization. Age-matched control dogs were immunized for comparisons. The noticeable difference between the control and plutonium-exposed dogs was the dramatic cellular chancres produced in the control and immunized lung lobes of the plutonium-exposed dogs. Inhalation or plutonium in addition to sequential lavages produced high numbers of neutrophils to be recruited to the lung. However. the effects of inhaled 239Pu02 on pulmonary CMI of 6 to 7-year-old dogs were obscured by the low pulmonary immune response in the age-matched control dogs. The age-matched control dogs showed no cellular changes in either the saline lung lobe or the immunized lung lobe. This result was attributed to the age of the dogs. The control dogs produced high amounts or immunoglobulins as measured in the serum. however. they could not recruit these serum immunoglobulins into the lung. The plutonium-exposed dogs showed a similar immunoglobulin immune response. The effects of naturally occurring tumors or those produced by inhaled radioactive compounds were evaluated tor their effects on the procoagulant activity assay and spontaneous macrophage migration. The procoagulant activity of the lung is significantly increased if a tumor is present in the lung. The migration area of the cell population lavaged from the tumor-bearing lung lobe was significantly increased over control lobe migration areas.
35

Activation and effector function of unconventional acute rejection pathways studied in a hepatocellular allograft model

Horne, Phillip Howard, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 283-321).
36

Disease mechanisms in the C3H/HeJ Mouse Model of Alopecia

Barekatain, Armin 05 1900 (has links)
Alopecia areata (AA) is a chronic inflammatory disease of hair follicles manifesting as patchy areas of hair loss on the scalp and body. Development of AA is associated with pen- and intra-follicular inflammation of anagen stage hair follicles, primarily by CD4+ and CD8+ cells. We hypothesized that if cell-mediated cytotoxicy against hair follicles is to be a component of the hair loss disease mechanism, increased expression of genes and products typical of cytotoxic cells, as well as increased apoptosis activity within affected hair follicles, would be expected to occur in the lesional skin compared to the normal skin. Furthermore, we studied gene expression levels of multiple cytokines and characteristic chemokines, using the C3FI/HeJ mouse model of AA. mRNA expression levels of granzyme A, granzyme B, perform Fas, Fas ligand, TNF-cL, TNF-aRl and R2, TRAIL, TRAILR, TRAMP, Thi-, Th2-, and Th17-associated cytokines, as well as multiple chemokines were compared between the skin, draining lymph nodes, thymus and spleens of normal and AA-affected mice using quantitative reverse transcriptase PCR. FasL, granzyme A, granzyme B, pro- and anti-inflammatory cytokines were all highly up-regulated in the skin of AA-affected mice. Immunohistochemical studies of the skin revealed that, although greater numbers of granzyme B and FasL expressing cells were present in AA affected skin, the cells were morphologically diffusely distributed and not exclusively located within the focal pen- and intrafollicular infiltrate. The majority of these cells were further characterized as mast cells, which were also found in substantially greater numbers in the skin of mice with AA compared to their normal haired controls. Almost no perform expressing cells were identified in AA affected mouse skin and TUNEL staining suggested relatively limited apoptosis activity in hair follicle keratinocytes. In conclusion, while granzymes and FasL may play important roles in disease development, the profiles and patterns of expression are not consistent with direct cell-mediated cytotoxic action against the follicular epithelium in chronic mouse AA. Potentially, hair growth inhibiting cytokines may play a more dominant role in AA development than previously thought. Furthermore, mast cells, with their increased presence around hair follicles in the AA affected mouse skin and their ability to express granzyme B and FasL, are suggested as potential key players in the pathogenesis of AA.
37

A study on natural killer cell cytotoxicity and lymphocyte subsets of patients with carcinoma of uterine cervix in Hong Kong

Fan, Man-chuen., 范敏泉. January 1990 (has links)
published_or_final_version / Obstetrics and Gynaecology / Master / Master of Philosophy
38

Disease mechanisms in the C3H/HeJ Mouse Model of Alopecia

Barekatain, Armin 05 1900 (has links)
Alopecia areata (AA) is a chronic inflammatory disease of hair follicles manifesting as patchy areas of hair loss on the scalp and body. Development of AA is associated with pen- and intra-follicular inflammation of anagen stage hair follicles, primarily by CD4+ and CD8+ cells. We hypothesized that if cell-mediated cytotoxicy against hair follicles is to be a component of the hair loss disease mechanism, increased expression of genes and products typical of cytotoxic cells, as well as increased apoptosis activity within affected hair follicles, would be expected to occur in the lesional skin compared to the normal skin. Furthermore, we studied gene expression levels of multiple cytokines and characteristic chemokines, using the C3FI/HeJ mouse model of AA. mRNA expression levels of granzyme A, granzyme B, perform Fas, Fas ligand, TNF-cL, TNF-aRl and R2, TRAIL, TRAILR, TRAMP, Thi-, Th2-, and Th17-associated cytokines, as well as multiple chemokines were compared between the skin, draining lymph nodes, thymus and spleens of normal and AA-affected mice using quantitative reverse transcriptase PCR. FasL, granzyme A, granzyme B, pro- and anti-inflammatory cytokines were all highly up-regulated in the skin of AA-affected mice. Immunohistochemical studies of the skin revealed that, although greater numbers of granzyme B and FasL expressing cells were present in AA affected skin, the cells were morphologically diffusely distributed and not exclusively located within the focal pen- and intrafollicular infiltrate. The majority of these cells were further characterized as mast cells, which were also found in substantially greater numbers in the skin of mice with AA compared to their normal haired controls. Almost no perform expressing cells were identified in AA affected mouse skin and TUNEL staining suggested relatively limited apoptosis activity in hair follicle keratinocytes. In conclusion, while granzymes and FasL may play important roles in disease development, the profiles and patterns of expression are not consistent with direct cell-mediated cytotoxic action against the follicular epithelium in chronic mouse AA. Potentially, hair growth inhibiting cytokines may play a more dominant role in AA development than previously thought. Furthermore, mast cells, with their increased presence around hair follicles in the AA affected mouse skin and their ability to express granzyme B and FasL, are suggested as potential key players in the pathogenesis of AA.
39

Mechanisms of lymphocyte selection in physiology and autoimmune pathology

Forsgren, Stina January 1991 (has links)
<p>S. 1-80: sammanfattning, s. 81-159: 7 uppsatser</p> / digitalisering@umu
40

Beyond Th1 and Th2: A non-classical immune pathway induced by Interleukin (IL)-23 complements IL-12 in immunity to Cryptococcus neoformans infection

Kleinschek, Melanie 23 February 2007 (has links) (PDF)
The interleukin (IL)-12 family of cytokines plays a key role in the orchestration of cellular immune responses, bridging innate and adaptive immunity. The founding member, IL-12, was discovered in the late 1980s as the first heterodimeric cytokine, composed of a 40 kDa (p40) and 35 kDa (p35) subunit. Years of basic and clinical research on this prototypical T helper type (Th)1 cytokine revealed its importance in immunity to intracellular non-viral infections, as well as in cancer and autoimmune diseases. Since the discovery of IL-23 as another cytokine composed of the p40 subunit of IL-12 in the year 2000, IL-23, rather than IL-12, could be shown to be the key player in rodent models of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. With accumulating evidence revealing IL-23 as the crucial regulator of a non-classical pathway of cellular immunity which is hallmarked by IL-17 producing T cells it is intriguing to gain understanding of the importance of such findings in immunity to infections. The present work describes a series of in vivo studies investigating the role of endogenous as well as exogenous IL-23 in a murine model of chronic fungal infection, cryptococcosis. To address the role of endogenous IL-23, wild-type (WT), IL-12- (IL-12p35-/-), IL-23- (IL-23p19-/-) deficient, as well as IL-12- and IL-23- double deficient (p40-deficient) mice on a C57BL/6 background were infected with Cryptococcus neoformans (C. neoformans). Following infection, p40-deficient mice demonstrated higher mortality than IL-12p35-/- mice. Reconstitution of p40-deficient mice with recombinant murine IL-23 prolonged their survival to levels similar to IL-12p35-/- mice. IL-23p19-/- mice showed a moderately reduced survival time and delayed fungal clearance in the liver. While interferon (IFN)-γ production was similar in WT and IL-23p19-/- mice, production of IL-17 was strongly impaired in the latter. IL-23p19-/- mice produced fewer hepatic granulomata relative to organ burden and showed defective recruitment of mononuclear cells to the brain. Moreover, activation of microglia cells and expression of IL-1β, IL-6, and MCP-1 in the brain was impaired. SUMMARY - 80 - The second part of the present work explores the mechanisms underlying the IL-23 effects by characterizing the role of exogenous IL-23. C. neoformans-infected C57BL/6 WT mice treated with recombinant murine IL-23 showed significantly prolonged survival time as compared to mock-treated control mice. However, complete survival throughout the observation period (100 days) was only achieved following IL-12 treatment. At day 21 post infection (p.i.) the IL-23-treated mice as well as the IL-12 group had a significantly lower fungal burden in the brain than the control mice. However, while IL-12 treatment was associated with elevated serum levels of the proinflammatory mediators IFN-γ, tumor necrosis factor (TNF)-α and nitric oxide, IL-23-treated animals, although more resistant, developed a Th2 response similar to the control group as measured by serum IgE levels. Further experiments to assess the mechanism of action were based on the finding of reduced fungal burden at the site of infection, the peritoneal cavity, at day 8 p.i. following IL-23 treatment. This microbicidal effect was also seen in p40-deficient as well as in T and B cell deficient (RAG-deficient) mice. Administration of IL-23 led to enhanced recruitment of inflammatory cells, not only of T cells but also cells of the innate immune system such as DCs, natural killer cells and granulocytes to the infected site. Although numbers of macrophages were not altered following IL-23 treatment, co-stimulatory molecules were markedly up-regulated on such cells. The chemokine/cytokine pattern induced by IL-23 treatment was hallmarked by proinflammatory mediators such as MCP-1, IL-1β, IL-6, TNF-α and IL-17, but also the Th2 associated cytokine IL-5. From these results it can be concluded that a non-classical immune pathway induced by IL-23 complements the more dominant role of IL-12 in protection against C. neoformans. This novel immune response is characterized by an enhancement of the inflammatory cell response and the production of a proinflammatory cytokine pattern hallmarked by IL-1β, IL-6, TNF-α and IL-17.

Page generated in 0.0483 seconds